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ABSTRACT 

 

Graphene, a two-dimensional material with very high charge carrier concentration, 

has drawn large research interest for sensing chemical species based upon charge exchange. 

Atomically thin 2-dimensional arrangement of carbon in hexagonal fashion in graphene, 

where each carbon atom is attached to 3 neighboring carbon atoms, and presence of π* and 

π bands imparts it many amazing properties. Some of these properties such as very high 

mobility, low 1/f and thermal noise, modulation of carrier concentration and Fermi level 

by electrical, optical, and chemical means, and very high surface to volume ratio make 

graphene very promising sensing material. In order to exploit these amazing properties for 

practical applications a reliable synthesis of high quality, large area graphene is needed. 

Chemical vapor deposition (CVD) based synthesis offers reliable, scalable, and 

inexpensive method to make low defect, uniform, large area, good quality, thinner 

graphene with the ability to transfer graphene on any desirable substrate. In this work, high 

quality single layer graphene has been synthesized by CVD for sensing applications. The 

growth process was optimized to yield good quality monolayer graphene, which uses CH4 

and H2 as precursor gases for the growth at 1035 °C, as characterized by Raman 

spectroscopy. 

 Widely employed transduction mechanism in graphene chemical sensors or 

chemiresistor is conductance change due to charge exchange between graphene and 
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adsorbed molecules. The reported sensitivities have been fairly low and selectivity is 

difficult to observe without functionalization. This work aims at improving the sensitivity 

of graphene sensors by three different approaches. In the first approach, the use of a global 

back-gate in graphene chem-FET devices has shown improvement in sensitivity and 

imparts selectivity as well. These devices exploit the back-gate induced Fermi level 

movement of graphene relative to defect level of analytes such as electron accepting NO2 

and electron withdrawing NH3 molecules. In the second approach, the defect density in 

graphene has been used to show sensitivity enhancement.  

In these two approaches the sensitivity enhancement has the limitation of linear 

dependence of conductivity change to that of numbers of adsorbed molecules. In the third 

approach the use a graphene/Si heterostructure based Schottky device or chemi-diode, has 

been proposed for improving sensitivity many folds. Since graphene work function can be 

varied electrically or chemically, the Schottky barrier height (SBH) at graphene/Si 

interface also varies accordingly affecting the carrier transport across the Schottky barrier. 

These devices take advantage of graphene’s atomically thin nature, which enables 

molecular adsorption on its surface to directly alter graphene/Si SBH, thus affecting the 

junction current exponentially when operated in reverse bias and resulting in very high 

sensitivity. The sensing mechanism based on SBH change has also been confirmed by 

capacitance-voltage measurements. By operating the devices in reverse bias, the work 

function of graphene, and hence SBH of the chemi-diode, can be controlled by the bias 

magnitude, leading to a wide tunability of the molecular detection sensitivity towards NO2 

and NH3 with very low power consumption. Optimized sensor design to detect particular 

analyte is also possible by careful selection of graphene/Si SBH. The use of Pd and Pt 
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nano-particles on top of graphene as a functionalization layer serves to increase the 

capability of these chemi-diodes in sensing analytes such as H2 which have very weak 

interaction with graphene. Therefore CVD graphene based sensors have been found to be 

very promising for practical applications in chemical sensing in ambient conditions which 

shows much improved sensitivity, and even selectivity towards hazardous gases. 
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CHAPTER 1 

INTRODUCTION 

 

Carbon is considered as the fundamental building blocks of all life forms on earth. 

It is chemically very versatile and forms larger variety of compounds. Each atoms of carbon 

can bond with 4 different atoms or molecules. When the carbon atoms link amongst 

themselves in tetrahedral fashion utilizing sp3 bonding, they form diamond the hardest 

naturally occurring material with insulating properties, however when they bond with 3 

carbon atoms only, in a honeycomb fashion, graphite is formed. It is three dimensional 

allotrope of carbon with sp2 hybridization of carbon to carbon bond. Graphite is rich in 

electrons and conducts along its layers. Graphite became well known after the invention of 

pencil in 1564. Around that time the mining and production of high purity and soft graphite 

   

Figure 1.1 (a) Schematic representation of single planner hexagon consisting of 6 C 
atoms connected to each other by sp2 bonding with C-C bond length of 1.42 Å. (b) 
Periodic repetition of hexagonal unit resulting in 2-dimensional honeycomb structure 
of graphene. 

(a) 

(b) 
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from Cumbria, England was strictly controlled due to its strategic application as refractory 

lining of canon ball molds. The ability of graphite to write comes from the fact that it made 

up of individual sheets of carbon which held together by weak Vander wall forces which 

allows layers to slip under shear force and leave a trace of thinner graphite on the surface. 

This very ability of slipping also make them very good lubricants. Since these sheets could 

slide upon each other they could be separated as very thin graphitic sheet down to single 

layer as demonstrated on SiO2 by and Novoselov and Geim in 2004.[1]  

 These individual sheets of carbon, which are constituent of graphite, are made up 

of planner sp2 bonded carbon atoms arranged in honeycomb fashion consisting of hexagon 

of carbon, as in benzene. This hexagon is depicted in Figure 1.1(a) with C-C bond length 

of 1.42 Å. The individual sheet structure as shown in Figure 1.1(b) is referred as graphene. 

 

Figure 1.2 Graphene as a building block of various forms of sp2 carbon materials 
such as fullerene, carbon nanotube, and graphite [2]. 
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Graphene as a true two-dimensional (2D) crystal not only possess many amazing 

properties not seen before in bulk material but also is the basic building blocks of many 

forms of sp2 bonded carbon. Figure 1.2 captures this description vividly.[2] It can be 

wrapped into fullerenes molecules where carbon atoms are arranged in spherical fashion 

by introduction of pentagons as positive curvature defects. These fullerenes have discrete 

energy states and can be considered as zero dimensional (0D)[3] graphitic structures. 

Graphene can be rolled along a given direction and the carbon bonds can be reconnected 

to generate 1-dimensional (1D) nanostructures called as carbon nanotubes (CNTs)[4] 

consisting of only hexagons of carbon atoms.  The three-dimensional (3D) structure, 

graphite, formed by stacking graphene sheet attached by week van der Wall forces has 

already been discussed above. 

1.1 Electronic Structure of Graphene 

The physical and chemical properties of materials is determined by their crystal 

structure and electronic structure. Many unique properties of graphene are tightly linked to 

its 2D crystalline nature and the resulting band structure. In 2D crystalline hexagonal lattice 

of graphene each carbon atom is C-C bond length (a = 1.42Å) apart from its 3 nearest 

neighbors in a plane and shares a sp2 hybridized σ bond with them. The forth orbital, pz 

consisting of single electron, is in z direction which is perpendicular to the graphene plane, 

and is responsible for conductivity in graphene. These pz electrons from each carbon atom 

hybridize to form π and π* bands which give rise to many peculiar electronic properties of 

graphene.[5, 6].  



www.manaraa.com

4 

The unit cell and corresponding reciprocal lattice of graphene is shown in Figure 

1.3[5]. The unit cell consists of two interpenetrating triangular lattice shown by A and B 

type atoms. The basis of unit cell consists of two atoms. The lattice vectors, and reciprocal 

lattice vectors are given by Equation 1.1 and 1.2. 

૚ࢇ ൌ
௔

ଶ
൫3, √3൯,			ࢇ૛ ൌ

௔

ଶ
൫3,െ√3൯			  (1.1) 

૚࢈ ൌ
ଶగ

ଷ௔
൫1, √3൯,			࢈૛ ൌ

ଶగ

ଷ௔
൫1,െ√3൯			 (1.2) 

 

From this lattice structure the energy band structure of graphene can be determine by 

invoking tight binding model or linear combination of atomic orbitals (LCAO) following 

the original work of Wallace in 1947.[7] 

 In order to obtain dispersion relationship or band structure we need to consider the 

interaction of carbon atoms to nearest and next nearest neighboring carbon atoms. As seen 

        

Figure 1.3 Hexagonal lattice of graphene and Brillouin zone. (a) The 2D lattice of 
graphene consisting of two triangular lattices (shown as A & B) interpenetrating each 
other. a1 and a2 are unit lattice vectors. (b) The Brillouin zone of graphene showing 
K & K’ as location of Dirac cones [5]. 

(a) (b) 
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from Figure 1.3(a) each carbon atom has 3 nearest and 6 next nearest neighbors. The 

hopping of pz electron is possible to nearest site (from A to B) or next nearest site (A to A). 

The interaction energy involved is given by t ~ 2.9 eV for A to B hopping and t’ ~ 0.1 eV 

for A to A atoms hopping. Solving the Hamiltonian with assumption of only nearest 

neighbor interaction being important, the dispersion relation is given by the following 

expression. 

ሺ࢑ሻܧ ൌ േݐට3 ൅ 2 cos൫√3݇௬ܽ൯ ൅ 4cos ቀ√ଷ
ଶ
݇௬ܽቁ cos ቀ

ଷ

ଶ
݇௫ܽቁ (1.3) 

where k is reciprocal lattice vector. The positive term in Equation 1.3 corresponds to 

conduction band and negative is for valence bans as plotted in Figure 1.4(a)[5] appears 

linear near low energy points in reciprocal lattice space called as Dirac point. The 

conduction band and valence band touch each other at these Dirac point at 6 places[8] on 

the corner of a graphene’s Brillouin zone (Figure 1.4(b)) referred as K and K’ points with 

the following position vectors in the reciprocal space. 

ࡷ ൌ ቀଶగ
ଷ௔
, ଶగ

ଷ√ଷ௔
ቁ ; ′ࡷ ൌ ቀଶగ

ଷ௔
, െ ଶగ

ଷ√ଷ௔
ቁ (1.4) 

The dispersion relation at K and K’ points and within ±1 eV vicinity of the Dirac point is 

given by the following linear relationship. 

ሺ࢑ሻܧ ൌ േ԰ݒி|࢑| ൌ േݒிඥ݇௫ଶ ൅ ݇௬ଶ (1.5) 

where vF is Fermi velocity given by  

ிݒ ൌ
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This linear dispersion relationship at low energy makes charge particles (electrons and 

holes) move with vF, as described by Equation 1.6, which is close to relativistic velocity. 

Therefore electrons and holes close to Dirac point in graphene is called as Dirac fermions. 

This is in stark contrast with most of the bulk semiconductors which exhibit parabolic 

dispersion relationship at low energies. 

The linear dispersion relationship of graphene is also responsible for properties like 

vanishing density of states (DOS) at Dirac points. The DOS in graphene is given by[9, 10] 

       

   

Figure 1.4 (a) Energy bands in monolayer graphene in the units of t = 2.7 eV (the 
nearest neighbor hopping energy). The upper band is conduction band and lower 
one is valence band. The blown up diagram shows linear relationship close to 
Dirac point where conduction band and valance band meet. (b) Low-energy 
electronic structure of graphene showing 6 Dirac points such points of contact. 
Two distinct corners of Brillouin zone are shown as K and K’ [5,8]. 

(a) 

(b) 
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ଶగ԰మ௩ಷ
మ    (1.7) 

The zero band gap state of graphene at Dirac point is called intrinsic state. Therefore the 

intrinsic graphene refers to a state at which graphene has no charge carriers.   

1.2 Electronic Transport and Field Effect Behavior of Graphene 

1.2.1 Ambipolar Field Effect in Graphene 

Electric field applied perpendicular to graphene plane can induce charge carriers, 

electrons or holes, also referred as electric field effect. The Fermi level (EF) can move up 

in conduction band inducing electrons, and can move down in valance band inducing holes 

depending upon the direction of the field. This results in ambipolar nature of graphene 

channel. In absence of externally applied electric field the EF and DOE should ideally be 

zero in graphene according to Equation 1.7. However in graphene channel there is always 

finite charge present due to either thermal generation or induction due to impurities at 

graphene and substrate interface even in absence of applied electric field. For this reason 

the threshold voltage beyond which graphene based field effect transistor can turn on or 

off does not really exist. The minimum to maximum current ratio in graphene based FETs 

remains in the range to 5-10 and hence render them unsuitable for switching application 

despite of their high mobility values. 

1.2.2 Mobility 

The main scattering mechanism in graphene  are phonon scattering[11], Coulomb 

scattering[12], and short range scattering[13] primarily due to defects such vacancies and 

cracks in graphene. Due to operation of these scattering mechanism in graphene the 

mobility is strongly dependent upon the quality of graphene and underlying substrates. For 
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instance at room temperature surface polar phonons and defects are two major scattering 

mechanism for graphene on SiO2, whereas at lower temperature phonons become 

important. The typical mobility values[14] of good quality graphene on SiO2 ranges from 

10000 to 15000 cm2V-1s-1. These mobility numbers are much higher in those reported in 

convention semiconductors and ever higher than 2D electron gas systems. Removing the 

substrates or using the one free from trapped charges has been shown to improve the 

mobility. The reported mobility in suspended graphene has been as high as 200,000 cm2V-

1s-1 for charge density below 5×109 cm-2 at a low temperature of 5K.[15, 16] At room 

temperature the supported graphene for instance on SiO2 will have an upper limit of 40000 

cm2V-1s-1 on mobility due to scattering by optical phonon of the substrate rather than 

phonon in the graphene channel. 

1.2.3  Minimum Conductivity 

Due to presence of disorder in graphene in the form of defects, impurities, ripples 

etc. produces fluctuations in the graphene’s electrostatic potential. These fluctuations 

become significant at the Dirac point where their screening is weak due to low charge 

density. The fluctuations in charge density has been proposed to be electron-hole puddles 

which have also been observed in scanning probe methods on graphene/SiO2 samples.[17] 

This behavior has been attributed to the experimental observation of minimum conductivity 

of graphene in the range of 4e2/h even though DOS approaches to zero at Dirac point. The 

other claim for the observation of minimum conductivity is the presence of impurities 

concentration in SiO2.[18] 
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1.3 Optical Properties 

Impressive optical properties of graphene such as high transparency, low 

reflectance coupled with high carrier mobility and near ballistic transport makes graphene 

very attractive for transparent electrode application. Monolayer graphene has very high 

optical absorption considering its atomic layer thickness. The absorbance value of 

monolayer graphene is about 2.3% for visible light. In multilayer graphene the individual 

layers do not interact each other optically due to their behavior as 2-dimensional electron 

gas (2DEG). Therefore the absorbance of multilayer graphene is roughly proportional to 

number of layers.[19] The absorbance of graphene remains fairly constant in the range of 2-

3% from ultraviolet to infrared region of electromagnetic spectrum when compared to other 

transparent materials.[20] Graphene’s reflectance remains very low at 0.1% but it increases 

to 2% for 10 layers.  

1.4 Mechanical Properties 

Graphene also has excellent mechanical properties and is a leading contender for 

nanoelectromechanical systems (NEMS). It is reported to be one of the strongest materials 

ever tested. Measurements have shown that graphene has a breaking strength 200 times 

greater than steel, with a tensile modulus (stiffness) of 1 TPa (150,000,000  psi).[21] Using 

an atomic force microscope (AFM), the spring constant of suspended graphene sheets has 

been measured. Graphene sheets, held together by van der Waals forces, were suspended 

over SiO2 trenches where an AFM tip was used to test its mechanical properties. Its spring 

constant was in the range 1–5 N/m and the Young's modulus was 0.5 TPa, which differs 

from that of the bulk graphite. These high values make graphene very strong and rigid. 
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These intrinsic mechanical properties could lead to usage of graphene for NEMS 

applications such as pressure sensors and resonators.[16] 

1.5 Chemical Sensing Abilities of Graphene 

The 2D nature of graphene coupled with delocalized π electrons resulting from sp2 

hybridization in C-C bond makes it highly suitable for sensing applications. The 2D nature 

makes it essentially a surface (as seen in Figure 1.1), enabling analyte molecules to adsorb 

very efficiently and produce the maximum change in its physical properties. On the other 

hand, the presence of delocalized π electrons makes it sensitive to a large variety of analytes 

that can adsorb on its surface and exchange charge with it or modify its surface properties. 

The noise characteristics of graphene have also been very impressive in the range of 10-9 

to 10-7 Hz-1 when compared with carbon nano tubes.[22] In general graphene shows very 

low 1/f and thermal noise.[23] These exceptional material properties have led to the 

demonstration of graphene based sensors that are capable of detecting down to a single 

analyte molecule.[24]  

1.6 Applications and Trends 

The combination of various amazing properties of the graphene enables its application 

in not just gas sensing but in variety of diverse areas such as terahertz devices, high speed 

transistors, displays, batteries, ultracapacitors, hydrogen storage, solar cells, membrane for 

separation of gases, magnetic, charge, strain, and biological sensors, composites etc. to 

name a few. This list has been ever expanding as new applications come to light by 

choosing, mixing and matching the properties of graphene alone or with combination with 

other materials. Figure 1.5(a) shows major applications[25] of graphene which have already 
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been demonstrated utilizing different properties of graphene. Figure 1.5(b) shows a π chart 

for applications that graphene companies were targeting in 2011.[26] This chart was 

    

 

 

Figure 1.5 (a) Various applications of graphene using different properties of 
graphene [25]. (b) Future trend of application of graphene by industry as 
surveyed in year 2011 [26].  

(a) 

(b) 
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prepared after a comprehensive survey of graphene companies and clearly highlights the 

versatility of graphene. 

1.7 Outline of the Dissertation 

Despite of being highly promising material for various kind of application such as 

those shown in Figure 1.5(a) graphene still remains a newer material. It will complete 10 

years of its first isolation in 2014. It therefore offers many challenges to be solved like any 

other new material system such as nitride semiconductors before it could become a 

commercial success.  

One of the major challenge graphene faces is its manufacturability. Growing device 

quality, large area graphene still remains a challenge for mass production. Two approaches 

appears promising, namely epitaxial and chemical vapor deposition bases graphene 

growth. The later growth technique constitute the scope of this thesis and is discussed in 

chapter 2, which also focuses on Raman spectroscopy as the principle characterization 

technique of graphene to determine its quality and type and even to determine of the grown 

material is graphene or not. 

The other major challenge graphene offers is careful control of its properties since 

it is one atom thick therefore its properties are highly affected by its environment and 

surroundings. Therefore there is a need to understand and develop better fabrication 

technique which has been explore in chapter 3. Graphene suffers from lack of selectivity 

in detecting molecules. The lack of bandgap in graphene also results in low turn-off ratio 

in graphene transistors, which makes it unattractive for use in integrated circuits. However 

the absence of band gap helps in changing the properties of graphene by use of a global 

back-gate. Figure 1.6 illustrates this effect for a pristine graphene (obtained by exfoliation) 
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field effect transistor (FET).[2] The Dirac point is the point of maximum resistance at certain 

gate bias Vg. For pristine graphene Dirac point is observed at Vg = 0V (Figure 1.6). Due to 

absence of band gap a graphene FET always remains on and the channel carrier type can 

be changed from n-type to p-type when Vg is changed from positive to negative values and 

vice-versa. This opens a window of opportunity to impart selectivity and sensitivity to polar 

molecules which has also been explore in chapter 3. 

A good quality low defect graphene based sensing elements typically show a poor 

response or sensitivity towards chemical analyte and pose as another area of challenge for 

graphene based chemical sensors to improve the sensitivity numbers. This forms the 

discussion of chapter 4 where use of a defective graphene shows improvement in 

sensitivity. However sensitivity has been proposed to improve dramatically by use a 

graphene based Schottky diode. Preliminary results supports our hypothesis. The extensive 

 

Figure 1.6 Ambipolar response of a single-layer pristine graphene [2]. The Fermi 
level EF is located at Dirac point for Vg = 0V. At negative Vg the EF is below Dirac 
point and for positive Vg, EF goes above it. 
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sensing under various test condition such as under optical illumination, dark, different 

exposure duration, concentration of analytes such as NO2 and NH3 going down to ppb level 

will be proposed as the ongoing activities towards completion of thesis. It will also be 

proposed to use the functionalization layer such as Pd and Pt layers to extend the sensitivity 

towards non polar gases such as H2.  

Finally in chapter 5, the contributions to the scientific community and important 

accomplishments and major findings of the project will be summarized. It will also capture 

some of the work in progress and possible future directions.  
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CHAPTER 2 

GRAPHENE GROWTH 

 

There are various routes to grow or procure graphene. Each technique comes with 

their own sets of challenges. Broadly there are four well-recognized methods. These 

methods include micromechanical cleavage, epitaxial growth, growth by CVD and 

reducing graphene oxide. Epitaxial and CVD growth methods have evolved to generate 

large area, good quality graphene. The reduced graphene oxide (RGO) is also capable of 

large area graphene however the structural quality of graphene remains poor. These growth 

techniques are surveyed briefly to put CVD based growth in perspective.  

2.1  Micromechanical Cleavage and Ultrasonication 

In the very beginning, Graphene sheets were obtained by mechanical cleavage or 

exfoliation of graphite, which consists of loosely bonded parallel layers of graphene.[27] 

The technique often referred to as a “scotch-tape method,” can provide 2D graphene 

crystals of high structural and electronic quality up to mm size. Though delicate and time-

consuming, this is the only technique that can guarantee production of defect free graphene 

without any contamination. Thus, it is very well suited for basic research and for making 

proof-of-concept devices, which only requires a small size of graphene with typical 

dimensions on the order of mm or less. Figure 2.1 shows a representative optical image of 

monolayer and bilayer exfoliated graphene on 300 nm thick SiO2 substrate.[28] Instead of 

exfoliating graphite (typically highly oriented pyrolytic graphite) manually, it is also 
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possible to automate the process by using, for example, ultrasonic cleavage.[29] This leads 

to stable suspensions of submicron graphene crystallites, which can then be used to make 

polycrystalline films and composite materials.[29, 30] Conceptually similar is the ultrasonic 

cleavage of chemically “loosened” graphite, in which atomic planes are partially detached 

first by intercalation, making the ultrasonication method more efficient.[30] The 

ultrasonication method allows production of larger area graphene, although controllability 

of the process and the structural integrity of graphene are still challenges that need to be 

addressed. 

2.2  Epitaxial Growth of Graphene 

This technique is well established for producing large area graphene of high quality 

by thermal annealing of SiC wafers.[31-33] In this method, which takes advantage of well-

established SiC epitaxy, 6-H or 4-H polytype of SiC is heated in the temperature range of 

1200 – 1600 oC in ultra-high vacuum (UHV) of 1×10-10 Torr for several minutes. At this 

high temperature Si leaves the SiC surface owing to its higher vapor pressure than carbon. 

The remaining C rich surface then rearranges on the hexagonal lattice of SiC to generate 

 

Figure 2.1 The small size (10s of µm) chunks of graphene obtained by exfoliation 
method showing poor contrast for monolayer graphene and better contrast for 
bilayer graphene [28]. 
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single to few-layer graphene.[34] Prior to graphene growth the SiC substrate surface needs 

to be cleaned by H2 etching at 1000 oC in  UHV to remove native oxide that is often present. 

This method results in Graphene growth on both Si and C terminated faces of SiC. Figure 

2.2 shows the STM image of graphene grown on semi-insulating C-face SiC.[35]  In general, 

the growth on Si-face is slower and self- limiting, resulting in thinner and better quality 

graphene (1-3 monolayers), whereas graphene on C-face is usually much thicker (5 – 10 

monolayers). The major advantage of this technique is growth of quite uniform, wafer scale 

and high quality graphene is possible, taking advantage of the precise control of process 

parameters in a commercial SiC growth chamber. Attempts have also been made to grow 

graphene on SiC substrate in near atmospheric Ar pressure of 900 mbar and at relatively 

higher temperature of 1650 oC with a goal to obtain larger area low defect, mono, bi and 

tri-layer graphene.[36] One of the disadvantages of this method of graphene synthesis is that 

 

Figure 2.2 (a) STM image of the graphene film formed on a carbon-face semi-insulating 
SiC substrate showing 1.2 and 1.4 nm steps in the basal plane of the SiC substrate. (b) 
Atomic resolution STM image of graphene showing triangular sublattice of carbon 
atoms [35]. 
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it is very difficult to remove or transfer the graphene to another desired substrate, due to 

the challenges involved in controllably etching SiC. Therefore, processing of graphene 

devices needs to be done on the SiC substrate itself. This can be expensive due to the high 

cost of SiC substrates, and also it does not readily allow the usage of a back gate for 

realizing transistors, or sensors requiring back-gate modulation. 

2.3  Reduced Graphene Oxide 

 It is chemical route to make graphene from graphite. In this method graphite is 

oxidized in presence of strong oxidizing agents such as sulphuric acid. A redox reaction 

takes place in between graphite and oxidizers in which electrons are removed from 

graphite. The most common method to produce graphite oxide is treating graphite with a 

mixture of sulphuric acid, sodium nitrate and potassium permanganate. Due to the 

oxidation process the interplanar spacing between the layers of graphite is increased. The 

resulting product is graphite oxide. When this graphite oxide is dispersed in solvents like 

water, graphene oxide results by interaction of water molecules in-between increased 

separation of interplanar spacing of graphite oxide which helps to separate these layer of 

graphene oxide using sonication or stirring. This process causes lots of damage to graphene 

 

Figure 2.3 (a) Chemical structure of graphene oxide. There are carboxylic and carbonyl 
groups at the edges but are not shown for clarity. (b) AFM image of exfoliated 1 nm 
thick graphene oxide sheets [37]. 

(a) (b) 
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oxide. The process of reduction of graphene oxide back to individual graphene layers 

introduces even more defects, therefore the resulting product is called reduced graphene 

oxide (rGO). Figure 2.3(a) shows chemical structure of graphene oxide and Figure 2.3(b) 

shows exfoliated graphene oxide.[37] There are various methods of making rGO from 

graphene oxide such as thermal, chemical and electrochemical means. Some of these 

techniques can produce very high quality rGO, similar to pristine graphene, but can often 

be complex or time consuming in nature. The very common technique to make rGO 

involves, treating GO with hydrazine hydrate at 100 for 24 hours. rGO is ideally suited for 

large scale industrial application such as energy storage where good quality graphene is 

not strictly required. 

2.4  Chemical Vapor Deposition Growth of Graphene 

Chemical vapor deposition (CVD) involves the activation of gaseous reactants or 

precursors and the subsequent chemical reaction, followed by the formation of a stable 

solid deposit over a suitable substrate. The energy for the chemical reaction can be supplied 

by different sources such as heat, light, or electric discharge as in thermal, laser-assisted, 

or plasma-assisted CVD respectively. Two types of reactions could be possible for the 

deposition process namely homogeneous gas-phase reactions, which occur in the gas phase 

and may results in formation of powders, and heterogeneous chemical reactions which 

occur on or near a heated surface leading to the formation of powders or films. Though 

CVD can be used to produce ultrafine powders, but in case of depositing extremely thin 

graphene films heterogeneous chemical reactions should be favored and homogeneous 

chemical reactions are avoided during the designed experiments. Figure 2.4 shows a 

schematic diagram of a typical CVD process to grow graphene in a tubular furnace[38] 
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illustrating the generalized steps which involves reactant transport, their activation by 

thermal means, transport of reactant by gas phase diffusion through a boundary layer, 

adsorption, chemical reaction, growth, desorption, removal of reaction product etc. 

The CVD technique of graphene growth has assumed prominence due to its ability 

to grow large area, monolayer, low defect graphene on inexpensive substrates such as cold 

rolled, high-purity (99.999%), 25 µm thick Cu foils using inexpensive CVD growth 

hardware and operational cost. There are host of parameter ranges such as atmospheric 

pressure to ultra-high vacuum, range of precursor gas ratios, different types of transition 

metal catalyst as substrate and the range of growth temperature that had been explored to 

grow graphene by CVD technique. Each of the CVD system, that has reported graphene 

growth, usually has a window or small range of parameters for most optimized growth 

 

Figure 2.4 The generalized CVD growth of graphene on top of a metal catalyst. The 
steps involved are: reactant transport, activation, transport of reactant thought 
boundary layer, reactant adsorption on the surface, dissolution and bulk diffusion, 
chemical reaction, surface migration, film growth, desorption, transport of product 
through boundary layer, and transport by forced convection [38]. 
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which also depends upon the system hardware and its capability. The basic understanding 

of growth mechanism is needed in order to find suitable parameters for optimizing 

graphene growth with a given hardware.  

The CVD of large-area, monolayer graphene on transition metal films and foils has 

been widely explored recently. In spite of the significant progress, CVD-grown graphene 

remains a polycrystalline film made of micrometer- to millimeter-size domains. It has been 

observed that, the graphene films grown on Ni foils or films do not yield uniform 

monolayer graphene. In most cases, a mixture of monolayer and few layers (polygraphene) 

are obtained. Whereas the use of Cu substrate has proved to be excellent candidate for 

making large-area, uniform thickness (95%), monolayer graphene due to the low solubility 

of C in Cu. It was suggested and even demonstrated that the graphene growth on Cu is 

surface-mediated and self-limiting. In this work the CVD of monolayer graphene was 

optimized by iteratively going through various parameters such as: 

 Evaporated thin film verses  thicker foil based metal substrate 

 Ni foil verses Cu foil based CVD 

 Annealing time 

 Growth temperature and time 

 Ratio of precursor gases  

2.4.1  Home Built Graphene CVD System  

 A crude CVD reactor was built from scratch which involved a round tube furnace, 

the quartz tube reactor, the precursor gases: CH4, H2, and Ar controlled by flow meters, 

and a low capacity (up to 9 Torr) DryFast diaphragm pump. The gases tanks were 

connected by polyethylene tubing. There was no good control on flow rates of gases, 
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pressure and temperature of the system. Under these condition Ni is likely to give an 

indication of graphitic material growth due to its higher solubility of C atoms. Therefore 

300 nm thick evaporated Ni film was used as a substrate for CVD of graphene. Raman 

characterization (discussed later) suggested the growth of monolayer to few-layer 

discontinuous graphene film. After getting the initial conformation of growth the CVD 

systems was revamped to optimize good quality monolayer graphene growth.  

 The new CVD setup consists of the three gas cylinders, each for CH4, H2 and Ar to 

the corresponding mass flow controllers (MFC) through manual valves and ¼” stainless 

steel tubing. The stainless steel tubing serves to provide higher conductance path and better 

leak characteristics as compared to polyethylene tubing. The MFCs were MKS Type 

1179A each calibrated for the gas being used. Ar MFC was 1000 sccm range for flow larger 

amount of Ar and a carrier and diluent gas. H2 and CH4 MFCs were 200 and 50 sccm range 

for keeping CH4 to H2 ratio low during the growth. The output from MFCs are joined 

together using a Swagelok Union Cross. One end of the cross is connected to the ¼” quartz 

delivery tube by a stainless steel bellows. The reaction chamber consist of 1½” diameter 

wide and 2’ long quartz tube. It is also fitted with ¼” thick compressed BN heat blocker at 

both the ends. The enclosure is formed by stainless steel end caps with sleeves. The sample 

or substrate is mounted on a flat quartz boat. The other end of the chamber has one outlet 

connected to stainless steel tubing with bellows. A barometer and a Pirani gauge (MKS 

901P, loadlock transducer) are attached downstream to this stainless tubing to monitor the 

pressure of the system. This tubing then connects to the inlet of a mechanical pump. The 

mechanical pump is a rotary vane pump from Pfeiffer Vacuum (Model: Duo 10 M) with a 

capability of 4.5 mTorr ultimate pressure. However the base system pressure remains in 
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the range of 100 mTorr. The outlet of the pump is connected to room exhaust line though 

a manual valve which keep the CVD system isolated from exhaust and saves from 

occasional oil leak of other pumps which are also connected to exhaust. The quartz tube 

reactor is housed inside a horizontal single zone split tube furnace from Carbolite. This 

furnace is capable of operating at 1100 °C for prolonged hours and takes about 45 min to 

reach that temperature. The temperature is controlled by Carbolite 301 controller. Split 

furnace was chosen to have a faster cooling rate which has bearing in Ni based CVD and 

also to cut-down process time. Figure 2.5 shows the picture of this home built graphene 

CVD system where precursor gas cylinders and mechanical pumps are not in the frame. 

The picture shows stainless steel tubing, MFCs, their controller and read-outs, horizontal 

split-tube furnace and its controller, quartz tube reactor fitted with stainless steel ends caps, 

pressure gauge and read-out etc.  

 

 

 

Figure 2.5 The home-build CVD graphene growth system 
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2.4.2  Growth on Thin Film 

In initial attempt graphene growth was carried out Ni and Cu thin films. We 

evaporated 5 nm of Ti and 300 nm of Ni sequentially on top of 100 nm thick thermally 

grown SiO2 on high conductivity p type Si. The role of Ti was to act as sticking layer in-

between SiO2 and Ni. For copper catalyst we used 300 nm of e-beam evaporated Cu on top 

of silicon wafer. The samples are loaded in BN boat at room temperature in a 1½” diameter 

quartz tube as shown in Figure 2.6. Roughing is done by a low capacity Diaphragm pump 

first and then Ar and H2 are flown into the system at a flow rate of 470 and 40 sccm 

respectively. The system temperature is ramped to 1000   ̊C the desired growth temperature. 

All the gases used here are ultra-high purity (UHP) quality which means their purity is 

more than 99.9995 %. Ar is used as a carrier gas. A 10 minutes of annealing is also done 

at growth temperature to allow some recrystallization of metal catalyst and also their 

cleaning by H2 as well. The flow rates for Ar and H2 are reduce to 100 and 10 sccm. After 

 

Figure 2.6 Schematic of CVD reactor chamber consisting of quartz tube and stainless 
steel end caps. BN heat blocker and boats are shown along with end cap. 
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this the precursor gas i.e. CH4 is flown for 30 minutes with a flow rate of 50 sccm along 

with Ar and H2 with 40 and 5 sccm flow rates. After this step CH4 and H2 flows are stopped. 

The parameter optimization became difficult in evaporated thin films. Structural 

characterization such as Raman spectroscopy revealed a discontinuous growth on Ni films 

with small domain size. There was no growth observed on Cu films.  

Apart from poor growth and coverage on Ni films the film based CVD of graphene 

suffered from complicated transfer technique. The transfer process involved first the 

dissolution of SiO2 in buffered oxide etchant (BOE) which separates Si substrate and CVD 

graphene on 300 nm Ni film. Thereafter scooping the film by a glass substrate and then 

further treating it in a Ni etchant such as FeCl3. Some of these etchant may get trapped in-

between glass substrate and graphene. Figure 2.7 captures the major steps of this transfer 

process. Due to sum total of difficulty in growth optimization and transfer process other 

Figure 2.7 Series of steps involved with transferring graphene from Ni film to a glass 
substrate. 
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avenues of growth and transfer were explored such foil based CVD of graphene on Ni and 

Cu foils.  

2.4.3  Growth on Foils 

 Due to optimization problems in thin film based graphene growth, it was attempted 

on 25-50 µm thick Cu and Ni foils. These foils are polycrystalline in nature and can be 

   

            

Figure 2.8 (a) The basic physics of Raman scattering involving ground state 
vibrational levels and virtual states. Infrared absorption is also shown for 
comaparison. (b) LabRAM Raman Spectrometer from Horiba used in this work. (c) 
The ray diagram of Raman spectrum set-up consisting of Laser, notch filters, lenses, 
grating and CCD detector [40]. 

(a) 
(b) 

(c) 
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annealed at higher temperature to improve crystalline properties of the material to facilitate 

good quality growth. They also simplify and improve the graphene transfer process by 

obviating the need to use HF based solvents to etch SiO2. It was determined by performing 

series of growth on top of Ni and Cu foils, and also by following the published report, that 

Cu foils are the material of choice for single layer graphene growth. The detailed discussion 

on foil based CVD follows after the discussion of graphene characterization. 

2.5  Raman Characterization of Graphene 

 In order to understand the type and quality of CVD graphene and to device the 

strategy to improve the CVD, a reliable and quick feedback is very important. In case of 

graphene Raman spectroscopy provides quick and immediate feedback on as-grown 

graphene on metal catalyst without any need for sample preparation. In fact Raman 

    

Figure 2.9 (a) Raman spectra of fluorinated and anodic bonded graphene depicting 
peaks of interest in 1200 to 3000 cm-1 range in a defective graphene [41]. (b) G band 
resulting from in-plane C-C band stretching of the ring and is characteristic of sp2 
carbon system. Electron excitation and phonon generation is shown as resonance 
process in the E-k diagram of graphene. (c) The radial breathing mode responsible for 
D peak. It involves intervalley phonon and defect scattering [43]. 

(a) (b) (c) 
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spectroscopy was used to determine if the thin film based CVD of graphene is suitable 

since it will require very large extent of optimization.  

Raman spectroscopy is based upon vibrational spectrum of a material system. It is 

becoming increasingly popular in detecting organic, inorganic species and crystallinity of 

the system. It is sensitive to strain and can detect stress in the semiconductor in very small 

region due to the ability of focusing light beam in very small region. The interaction of 

incident waves to matter results in scattering of waves apart from other effects such as 

absorption or transmission. The scattered waves can be of three types, the predominant 

Raleigh scattered light which has same wavelength as that of the incident wavelength as 

seen in Figure 2.8(a). The other two types have different wavelength or energy than those 

of incident photons and are called Raman scattered. These scattered photons interact with 

 

Figure 2.10 (a) Raman spectra of various sp2 carbon based system showing ability to 
distinguish them based upon intensity, shape and with of D, G G’ or 2D peaks using 
one simple scan of Raman spectrum [44]. (b) Using the shape of 2D band it is possible 
to distinguish graphene from graphite and also determine the numbers of monolayers 
by fitting different Lorentzians to the band [44].  

(a) (b) 
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optical phonons of the material therefore contain the material information.[39] When 

incident photons impart energy to the lattice by emitting a phonon, the scattered photon 

comes out with lower energy or higher wavelength and the process is called as Stoke shifted 

scattering. On the other hands if a phonon in absorbed in scattering process it is referred as 

anti-Stoke shifted scattering as seen in Figure 2.8(a). Anti-Stoke scattering has lower 

probability process than Stoke scattering therefore in Raman spectrum Stoke shift is 

measured. However entire Raman scattering is very low probability process as compared 

to Raleigh scattering (~1 in 108 parts) therefore a strong monochromatic light source such 

as laser is a must for obtaining Raman spectrum. Figure 2.8(c)[40] shows a simplified 

schematic of Raman setup consisting of laser source, notch filters to avoid Raleigh 

scattered photon, grating and CCD detector to measure the spectrum. Figure 2.8(b) shows 

the image of Raman spectrometer setup, LabRAM 1B from Horiba. 

The Raman peaks of interest in graphene material system for routine 

characterization lies in the Raman shift range of 1200 to 3000 cm-1 as shown in Figure 

2.9.[41] This spectrum corresponds to a defective graphene to capture all possible peaks in 

the range of interest since some of the peaks may be absent in good quality graphene.  The 

prominent peaks in the Raman spectra of graphene system are G and 2D bands occurring 

at ~1580 cm-1 and ~2700 cm-1 respectively. The G band corresponds to doubly degenerate 

in-plane transverse optic (iTO) and longitudinal optic (LO) phonon mode that corresponds 

to E2g symmetry at the Brillouin zone canter.[42] Physically speaking, it result from bond 

stretching of all pairs of sp2 atoms both in rings and chains as seen in Figure 2.9(b).[43] It is 

the only band that occurs from first order Raman scattering process in the graphene. The 

presence of G peak confirms the presence of carbonaceous material with sp2 bonding and 
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its intensity is proportional to the thickness of the carbonaceous material. The other 

prominent band 2D results from a second order scattering process that involves double 

resonance and two iTO phonons near K point.  

There are two defect related peaks in graphene referred as D and D’. The D band 

corresponds to the double resonance radial breathing modes of sp2 bonded atoms in the 

ring (Figure 2.9(c)[43]) and D’ corresponds to sp3 hybridization in the system. These bands 

are Raman forbidden and only occurs when the periodicity of hexagonal lattice is broken 

by a point defect, grain boundary, line defect, graphene edge, dopant atom etc. since D 

band involves one iTO phonon and a defect. The 2D band gets its name for being overtone 

of D band which means ω2D is about twice the ωD. 

The shape, width, position and relative intensities of these bands or peaks helps in 

distinguishing between graphite, graphene and various other sp2 based C systems such 

carbon nanotubes. Figure 2.10(a) captures this ability of Raman spectroscopy to distinguish 

between various carbon based materials very clearly such as amorphous carbon, CNTs, 

pristine and defective graphene and HOPG.[44] It also helps in determining the number of 

   

Figure 2.11 (a) A two-phonon second-order Raman spectral processes giving rise to 
the G’ or 2D band (b) Schematic view of the electron dispersion of bilayer graphene 
near the K and K’ points showing two bands. The four DR Raman processes are 
indicated as P11, P22, P12, and P21 [42].  

(a) (b) 
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monolayers present in the sample, based upon shape and width of 2D band, by fitting 

various different types of Lorentzians as seen in Figure 2.10(b).  

The 2D peak in graphene is the result of double resonance process and is coupled 

to electron and phonon in graphene dispersion relations.  Electron-phonon scattering along 

KΓK’ directions has to satisfy the scattering process shown in Figure 2.11(a)[42] as per 

selection rules. A monolayer exfoliated graphene sample at room temperature exhibits a 

sharp 2D peak consisting of single Lorentzian feature with a full width at half maximum 

(FWHM) of ~24 cm-1. The intensity of this peak relative to G peak is very high sometime 

reaching to 4 time more intense than G peak or I2D/IG ~ 4.[45] This very large intensity of 

2D peak in monolayer graphene has been associated to the triple resonance process.[42] In 

bilayer graphene with Bernal (ABAB) stacking both electronic and phonon bands split in 

special manner as shown in Figure 2.11(b)[42] for electronic band structure. This leads to 4 

different possibility of transition and hence phonon emission. These transitions give rise to 

   

Figure 2.12 (a) Raman spectra of CVD graphene on 300 nm thick Ni film on SiO2. The 
different intensity of G peak corresponds to different thickness of graphene at different 
location in 4 × 7 mm Ni sample. (b) The blown up images of 2D band shows the presence 
of multi-layer graphene due to broadening (FWHM of 69 cm-1 at location 2) that may 
consist of many Lorentzian peaks.  

(b) (a) 
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4 different Lorentzian in 2D spectrum of bilayer graphene. The sum total of these peaks 

are observed as a broadened 2D peak (Figure 2.10(b)) with reduced intensity to that from 

a monolayer graphene. Similarly trilayer graphene has 6 possible transition leading to six 

possible Lorentzian with about ~24 cm-1 FWHM that can be fitted with 2D peak giving 

broader line width and smaller intensity to 2D peak of trilayer graphene as in Figure 

2.10(b).[44] The 4 layered graphene 2D peak (as seen in Figure 2.10(b)) shows 3 Lorentzian. 

Five monolayers and beyond the shape of 2D peak becomes similar to that of HOPG or 

graphite 2D peak. As seen again in Figure 2.10(b), the HOPG 2D peak consists or two 

Lorentzian. One is about half the intensity of the other which given a distinct shoulder to 

graphite 2D peak. Figure 2.12(a) shows the Raman spectra taken at 4 different location on 

a 5 mm × 10 mm size 300 nm thick evaporated Ni film on SiO2. The D peak intensity 

suggest low defect concentration in CVD graphene on Ni film. However 2D peaks in 

Figure 2.12(b) suggest multilayer graphene due to a larger value of 69 cm-1 in 2D FWHM. 

Since the 2D peak shapes are different at differ location therefore multilayered graphene 

thickness is non-uniform across the sample.  

The graphitic system such as HOPG and pyorolytic graphite (PG) have only 2E2g 

vibrational mode Raman active, occurring at 42 and 1581 cm-1 along with three distinct 

second order features at ~2440, ~2730, and ~3240 cm-1.[46] These second order features or 

overtones have been attributed to overtone scattering from the features in the density of 

states in the graphite system.[47] In graphene system (monolayer or few-layers) these 

overtones are also observed of which the one occurring around 2700 ± 50 cm-1 is referred 

as 2D band. The other two overtones has been observed at 2451 and 3251 cm-1, can be seen 

in Figure 2.12(a) along with 2D peak, in our few-layer graphene sample grown on Ni film, 
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which were probed with 532 nm laser. The first overtone has also been observed at 2464 

cm-1 with 632 nm laser excitation on as-grown graphene on Cu and transferred graphene 

on SiO2.  

The information on layer thickness determination is valid for ABAB type Bernal 

stacked graphene which are obtained by exfoliation of HOPG. The multi-layered graphene 

obtained by epitaxial method or CVD, in which different layers may random orientation 

with other is called turbostratic graphene. Due to the random orientation of layers with 

each other there is very little interaction in-between them, therefore the electronic structure 

of turbostratic graphene looks almost like a monolayer graphene. This reflect in 2D band 

of the turbostratic graphene in Figure 2.10(b) which shows it as a single Lorentzian similar 

to the 2D of monolayer graphene. However it is still possible to distinguish turbostratic 

from monolayer graphene. There is good amount of broadening of 2D feature due to 

relaxation of the double resonance Raman selection rules associated with the random 

orientation of the graphene layers with respect to each other. Therefore FWHM of ~45-60 

cm-1 is observed in single Lorentzian 2D peak of turbostratic graphene as oppose to 24 cm-

1 in that of monolayer.[42] The I2D/IG is also reduced considerably in the range of 0.2 to 0.6 

and the position is blue shifted.[48]  

The D peak as mentioned before corresponds to amount of disorder or defect in 

graphene material system. Intensity ratio of D and G peaks in graphene (ID/IG) helps to 

quantify the amount of defects and disorder. In general when ID/IG is high then the material 

is considered highly defective. When the ratio of ID/IG is less than 0.3 it considered a good 

quality graphene having lesser density of defects and disorder. Broadly speaking the 

intensity ration can quantify two types of defects in graphene. The line defects arising from 
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smaller graphene crystallite size, La or point defects due to absence of C atoms or inclusion 

of impurity atoms in graphene. The graphene crystalline size in nm is given by the 

following expression.[49] 

௔ሺ݊݉ሻܮ ൌ ሺ2.4	 ൈ 10ିଵ଴ሻߣ௟
ସ ቀூವ

ூಸ
ቁ
ିଵ

  (2.1) 

 

Where λl is the wavelength of the laser in nm used for Raman spectrum measurements. 

During the optimization process the small crystalline size of graphene were observed for 

CVD graphene on Cu which will be useful as defective graphene for sensitivity 

enhancement and will be discussed in chapter 4. In graphene with zero-dimensional point 

defects, the distance between defects, LD, is a measure of the amount of disorder in the 

sample and is given by expression 2.2. [50]     
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 (2.2) 

 

   

Figure 2.13 (a) The graphene growth mechanism on copper foils [51]. (b) The graphene 
growth by surface adsorption as revealed by use of C13 and C12 isotopes of carbon 
[52].  
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In low defect density regime, when LD ≥ 10 nm, it possible to estimate the point defect 

density in graphene, nD, by the expression given below.  

݊஽ሺܿ݉ିଶሻ ൌ
ሺଵ.଼േ଴.ହሻൈଵ଴మమ

ఒ೗
ర ቀூವ

ூಸ
ቁ
ିଵ

  (2.3) 

2.6 Growth on Ni Foil 

 Ni has very high solubility of carbon atoms at higher temperature exceeding 0.1 

atom % at 1000 ̊C. The solubility decreases with temperature and extra carbon atoms are 

segregated out resulting in thicker graphene growth. Due to higher solubility the graphene 

thickness depends upon growth pressure, concentration or flow rate of CH4, and rate of 

cooling. Ni is ideal material to optimize graphene growth when the set-up is made from 

scratch. It helped us in getting a baseline parameters to grow graphene, although thicker 

but good quality. However the thinner graphene, six monolayers or small, also referred as 

 

Figure 2.14. Series of steps involved in growing monolayer graphene on Cu foils. The 
optimized process parameter are shown in the schematic plot. 
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few layer graphene (FLG) could be obtained by rapid cooling of the growth system from 

1000 ̊C to room temperature within minutes. Therefore it was needed to choose a material 

with low C dissolution. 

 2.7  Growth on Cu Foil 

 By virtue of low solubility of C atoms in Cu (< 0.001 atoms % at 1000 ̊C) growing 

thinner (mono and bi-layer) graphene becomes easier compared to Ni. Here thinner 

graphene layer is not affected much by cooling rates and CH4 flow rates. The growth 

mechanism is surface adsorption of C atoms on Cu. At growth temperature say 1000 ̊C 

carbon atoms are releases on Cu by dehydrogenation. These released atoms then grow by 

nucleation and growth as more C atoms are added to the periphery. They keep growing till 

they become large enough and coalesce to form full coverage of film. Figure 2.13(a) show 

the schematic of this growth mechanism on Cu foils.[51] The use of C13 and C12 isotopes 

clearly indicates the surface adsorption type growth mechanism owing to low carbon 

solubility in Cu. This is illustrated in Figure 2.13(b) as reported by Li et al.[52] where red 

colored C13 isotope is delivered to Cu foil at growth temperature by 13CH4 and graphene 

starts to grow by nucleation and growth. When the gas was switched to 12CH4 the black 

colored C12 carbon atoms continued the growth by getting embedded to the periphery of 

the red colored C13 carbon based growing grain. This suggests that C doesn’t go in the 

bulk of Cu foils, therefore it does not segregate out at random places resulting into thicker 

graphene growth. These conclusion were drawn by Li et al. using Raman mapping and are 

indicative of the fact that the copper is the material of choice for thin graphene growth.  

 We optimized our graphene growth on Cu. The optimization involved a good 

cleaning procedure for getting rid of copper oxides such as CuO and Cu2O which are 
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present in cold rolled Cu foils. The Cu foils were first cleaned in acetone and isopropanol 

and then sonicated in acetic acid to remove oxide. They were loaded in growth chamber 

under Ar over pressure. The system was evacuated and then Ar was flown at 250 ̊C for 

bake out. H2 was flown for 2 hours at 1000 ̊C to anneal Cu to increase its crystalline quality 

and remove any remaining and newly formed oxide. The actual growth was performed at 

further elevated temperature of 1035 ̊C in presence of CH4. The forced cooling was done 

by use of a fan. It takes about 45 minutes to cool down the system to 100 ̊C. Figure 2.14 

shows the optimized process parameter and sequence of steps for graphene growth. Raman 

spectrum of graphene on Cu foils are shown in Figure 2.15. It plots the spectra for two 

different graphene samples. Both the samples show very low defect density as indicated by 

ID/IG value of 0.1 and 0.2. The I2D/IG value of 3.9 and 2.0 along with 2D FWHM of 25.6 

 

Figure 2.15 Raman spectra of two samples of graphene as-grown on Cu foils by 
CVD growth technique with optimized parameters. The 2D FWHM of 21.3 and 25.6 
is indicative of monolayer graphene. 
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and 21.3 cm-1 clearly indicate the presence of monolayer CVD graphene on 25 µm thick 

foils. 

In summary a CVD reactor was set-up to perform graphene grown on transition 

metal substrates. The reactor was built by assembling different components such as quartz 

tube chamber, horizontal split furnace, mechanical pump, MFCs and pressure gauges. The 

optimized process parameter were obtained by understanding growth mechanism and by 

performing series of growth on different types of substrates and under different growth 

conditions. The quality of growth was assessed by Raman spectroscopy on as-grown 

samples. The device fabrication of CVD graphene would require the development of a 

reliable graphene transfer process on any desirable substrate and also of device processing 

techniques. The next chapter address the processing and the sensor development effort 

from graphene based devices. 
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CHAPTER 3 

SENSING APPLICATIONS OF GRAPHENE 

 

3.1 Introduction 

Graphene has drawn huge research interests in sensing applications due to its 

extraordinary material properties including remarkably high charge carrier mobility of 

200,000 cm2V-1s-1,[16] very high thermal conductivity[53] and mechanical strength,[21] as 

well as high degree of chemical inertness at room temperature.[1] The 2D nature of 

graphene along with its unsaturated C-C (sp2) bonding makes it highly suitable for sensing 

applications. The 2D nature makes it essentially a surface, enabling analyte molecules to 

adsorb very efficiently and produce a large change in its physical properties. On the other 

hand, the presence of unsaturated sp2 bond makes it sensitive to a large variety of analytes 

that can adsorb on its surface and exchange charge with it or modify its surface properties. 

These exceptional material properties have led to the demonstration of graphene based 

sensors that are capable of detecting down to a single analyte molecule.[24] Some of the 

properties of interest in sensing applications are listed in Table 3.1. 

In spite of these highly promising aspects of graphene for sensor development, it 

still suffers from lack of selectivity in detecting molecules which has been studied in this 

dissertation. In addition, the absence of bandgap and inability to change its resistance 

appreciably under strain, which makes its potential applications in optoelectronic devices 
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and nanoelectromechanical systems (NEMS) rather challenging for certain applications. 

The lack of bandgap in graphene also results in low turn-off ratio in graphene transistors, 

which makes it unattractive for use in integrated circuits. Therefore, other 2D materials are 

also being pursued for sensing beyond graphene, and the heterojunctions of these materials 

as well as other traditional semiconductors with graphene are being considered, for sensing 

applications where graphene by itself is not capable enough.  

Table 3.1 Electronic and Material Properties of single layer graphene 

Mobility 6.5 ൈ 10ସ [54] - 106  cm2V-1s-1[55] 
Thermal conductivity ሺ4.84 േ 0.44ሻ ൈ 10ଷ to ሺ5.3 േ 0.48ሻ ൈ

10ଷ W/mK[53] 
Young’s modulus 1.0[21] to ሺ2.4 േ 0.4ሻ TPa[56] 
Breaking strength 42 N/m [21] 
Breaking strain 25% [21] 
Normalized noise spectral density  
(at f = 10 Hz) 

10ିଽ to 10ି଻ Hz-1 [57] 

Noise amplitude (μm scale 
devices) 

~10ିଽ to 10ି଻ [57] 

 

3.2 Graphene Sensors 

 Two broad category of graphene sensor has been demonstrate so far based upon the 

quantity or stimuli being sensed. These are physical sensors which have been shown to 

sense physical quantities such as pressure, strain, magnetic field, IR etc., whereas chemical 

or biological sensors of graphene have been shown to sense various analytes such as ppm 

or sub-ppm level of NO2 etc. and various kinds of bio-molecules and bio-markers. 

3.2.1 Physical Sensors 

Due to its outstanding electronic properties, mechanical strength and single atomic 

layer thickness,[16, 21, 58, 59] graphene can be considered as the ultimate building block for 
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nanoelectromechanical systems, which are capable of sensing a host of physical parameters 

including pressure, mass, charge, electric potential, temperature, and magnetic field. 

Graphene NEMS can also be used as a versatile device for various RF applications. NEMS 

resonator has been reported from all three basic types- exfoliated,[60] epitaxial,[61] and 

CVD[62] graphene. Graphene with its linear energy dispersion relationship and zero 

bandgap can absorb also light from mid-infrared (mid-IR) to ultraviolet wavelength range 

with almost flat (2.3% for monolayer thickness) absorption spectra which makes it very 

attractive for optical detector. Percentage increase in light absorption can be possible by 

employing multilayer graphene. Graphene based IR camera has been reported already.[63] 

In addition, graphene bolometer,[64] Infrared (IR) detector based upon quantum Hall effect 

(QHE),[65] and magnetic field tunable IR detector based on Landau Level (LL) formation[66]  

Table 3.2 Graphene based physical sensors and their applications 

 

Physical 
Sensors 

Sensing Mechanism Applications 

NEMS Resonators  Capacitively coupled mechanical 
resonance 

 Ultra high quality factor 
 Gate tenability[62] 

 Ultrasensitive mass sensing[67] 
 Probe for electrical and magnetic 

properties of lower dimensional 
materials[58]  

 High frequency oscillator, filter, 
modulator, mixers, etc.[68] 

 Chemical Sensing 
Magnetic field 

sensors 
 Detection of magnetic field by 

Hall Effect[69, 70] 
 Gate tunable sensitivity[71] 

High density magnetic storage 
application 

IR and THz sensor Light absorption from mid-IR to UV.  Bolometric Sensor[64]  
 QHE effect based IR photodetector[72] 
 Asymmetric contact IR detector[63] 

Pressure Sensor Change in electrical/mechanical 
properties with applied strain.[73] 

 Tunable mechanical resonance  
 Chemical reactions and phase 

transitions[74, 75] 
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have been demonstrated. Some of the unique physical properties of graphene such as 

thickness in atomic scale, very high carrier mobility and long spin relaxation time also 

make it ideally suited for magnetic sensor. Graphene magnetic sensor employing Hall 

geometry has been reported with performance close to already established 2-dimensional 

electron gas (2DEG) based sensors.[76] The sensitivity of this sensor can also be varied over 

a wide range by applying back gate bias.[71] 

Graphene spin capacitor,[69] and sensor devices with nanoconstriction[77] have also 

been realized. Pressure sensors from exfoliated[78] and CVD graphene,[79] Silicon 

Nitride/graphene,[80] epoxy/graphene,[81] Boron Nitride/Graphene[82] have been 

demonstrated. Also, graphene based charge sensor has been reported where a twin quantum 

dot (QD) structure in which the larger QD serves as a single electron transistor to read out 

the charge state of the nearby gate controlled small QD[83] and, real time radiation 

dosimeter where electrodes are based on graphene.[84] Table 3.2 summarizes the graphene 

based physical sensors, their sensing mechanism and applications. 

3.2.2 Chemical and Biological Sensors 

 As discussed before, the unique material properties of graphene make it very 

promising material for chemical and bio molecular sensing applications, where the 

adsorbed molecules on graphene surface can strongly affect its physical properties, 

including conductivity[24] and surface work function (SWF).[85, 86] Demonstration of its 

ultra-high sensitivity, down to a single gas molecule,[24] confirmed its potential application 

in molecular detection based on changes in conductance,[24, 85] SWF,[85] frequency of the 

surface acoustic waves,[87] and low frequency noise.[88] A vast majority of the graphene 

based sensors reported so far are in the form of chemiresistor or chemical field effect 
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transistors (chem-FETs) where the surface adsorbed molecules or biological species, either 

adsorbed directly or through receptors, proportionally change the charge carrier density in 

graphene causing its conductivity to vary linearly with the number of adsorbed molecules. 

Table 3.3 enlists some of chemical and biological sensor of graphene, their transduction 

mechanism and analytes being sensed.  

Table 3.3 Graphene based chemical and biological sensors 

 

3.3  Gas Sensing 

 Sensing chemical species in gaseous or vapor form in trace amount is very 

important in various walks of life. Figure 3.1 illustrates some of these area where chemical 

sensing in parts per million (ppm) or even lower concentration is routinely needed. In 

particular the monitoring of air quality for various pollutants coming from different sources 

Sensor Type Physical parameter 
measured 

Analytes/applications 

Gas and vapor sensors 

 Conductivity[24] 
 Surface work function[85, 89] 
 Surface acoustic wave 

frequency[87]  
 Low frequency noise[88] 

NO2, NH3, H2, etc.[24, 34, 63, 90] 

pH sensors Change in doping with pH Protein i.e. bovine serum albumin[91] 

Heavy metal sensors 
Change in doping with metal 

particle attachment[92] 
Mercury(II) (Hg2+)[92] 

H2O2 sensor Current change 
(Cyclic voltammetry) 

Nitrite (NO2−)[93] 

Glucose sensor 
Current change 

(Cyclic voltammetry) 

Electrochemical biosensors to investigate 
the enzyme-catalyzed reactions in 

biological systems[94] 

Nucleic acid sensor 
Current change 

(Cyclic voltammetry) 
Electrochemical detection of nucleobases, 

nucleotides, and DNAs[95] 

Sensor for cancer 
protein marker 

Current change 
(Cyclic voltammetry) 

Sensor to detect prostate-specific antigen 
the marker for prostate cancer[96] 
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such as automotive emission exhaust, industrial pollutants such as NOx, CO, CO2, SO2, 

chlorofluorocarbons etc. are very detrimental. These pollutant could be toxic, can cause 

global warming, smog or acid rain, all of which are detrimental to all form of life and can 

have negative long term effect on the environment. Sensing various volatile organic 

components (VOCs) in trace amount [97, 98] is very critical to diagnostic applications in 

healthcare by analyzing the exhaled breath of a patient. Detecting chemical warfare agents 

and explosives is critical to homeland security. Some of these agents such as nerve agents 

(Sarin, Soman), mustard gas and explosives (DNT, TNT etc.) are need to be sensed in trace 

amount as well.  

 There are a range of available gas sensing technologies. Amongst them mass 

spectroscopy and gas chromatography techniques are very sensitive and selective to detect 

particular gases. However the existing systems are bulky, heavy, and are very expensive 

for many applications. Even the portable counterparts of these gas sensing units are of the 

 

Figure 3.1 Chemical sensing in trace amount (ppm or sub ppm level) is very import 
in monitoring various pollutants, diagnostic applications in healthcare and in threat 
detection by sensing molecules such DNT, TNT etc. 
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size of a small suitcase. These equipment also require appropriate training for proper 

operation. The other existing technology which offer more portable unit generally relies 

upon the sensing gas to modify electrical characteristics of the sensing materials as a 

transduction mechanism. The most popular of this technology uses metal oxide 

semiconductors such as In2O3, SnO2, ZnO, and WO3. While metal oxide semiconductor 

technology is smaller in size and can operate with reduced power compared to mass 

spectroscopy and gas chromatography, they still cannot be integration with standard silicon 

or CMOS fabrication. This integration issue results from their relatively high temperature 

of operation of about 300 °C to 500 °C range, which interferes with the operation of the 

 

Figure 3.2 Reported sensing modalities of graphene based gas and vapor sensors. 
Change in (a) conductivity by NO2, NH3 and H2O [24], (b) frequency of SAW by CO 
[99], (c) SWF by NO2 [85], and (d) unique 1/f noise spectrum of VOCs [88]. 

(a) 
(b) 

(c) 
(d) 
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standard Si-based CMOS devices and circuitry. Portable units utilizing these technologies 

are generally the size of a walky-talky. Furthermore, the power at which they operate 

 

 

Figure 3.3 Processing steps for graphene transfer on any desirable 
substrate. 
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(300mW to 800mW) is still much higher than is desirable for many portable applications. 

Another drawback these metal oxide suffer is a strong dependence of their critical sensing 

parameters on growth methods and process conditions. 

 In recent past graphene has generated huge research interest in developing chemical 

sensors due to various attractive material properties as discussed in introduction of this 

chapter. Different transduction mechanism have been proposed and demonstrated the 

versatility of graphene based gas and vapor sensors such as change in conductivity,[24] 

frequency of SAW,[99] SWF,[85] and 1/f noise spectrum[88] as shown in Figure 3.2. Amongst 

these the widely employed transduction mechanism of conductivity change has been 

investigated in this chapter along with some preliminary results for SWF. The objective of 

the investigation has been the demonstration of tunability of sensitivity which can lead to 

selectivity on CVD graphene based back-gated FET devices. The device processing was 

developed which involved the development of graphene transfer process as well. 

3.4  Sensor Fabrication 

 Conductivity and SWF based sensing modality of graphene gas sensors have been 

studied in this chapter. While SWF requires a capacitive structure using as-grown graphene 

as one plate of a capacitor which obviate the need for any device fabrication, whereas 

conductivity based sensors required full-fledged development graphene FETs. The first 

step in making any CVD graphene device is transfer of graphene on a desirable substrate. 

3.4.1  Graphene Transfer 

In CVD based graphene growth on transition metal catalyst, the grown graphene 

cannot be used directly since it sits on top of a metal film or foil. It is required to be 
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transferred on a desired substrate for all possible characterization and device making. In 

 

Figure 3.4 Device processing steps for fabrication of graphene 
FET which will serve as chem-FET. 
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our graphene growth on Cu foil it grows on both sides of the foil. In general graphene 

grown on the bottom side of the foil is of inferior quality as compared to the one gown on 

the top side. The graphene transfer process therefore entails the following steps as 

illustrated in Figure 3.3. The top side graphene is first protected by spin coating of poly 

methyl methacrylate (PMMA) twice at 3000 rpm for 40 sec. It also provides mechanical 

strength to graphene in the subsequent processing steps. The PMMA coated sample is 

loaded upside down in reactive ion etching (RIE) chamber upside down in order to expose 

the bottom graphene layer. This graphene layer is remover by oxygen plasma which is 

sustain at 150 W for 180 sec. The sample is then kept in concentrated Cu etchant over night 

for complete removal of Cu. Both FeCl3 and (NH4)2S2O8 (ammonium persulfate) have been 

used. This results in graphene/PMMA layer floating in the etchant as seen in Figure 3.3(e). 

The poor contrast in ammonium persulfate solution is the results of monolayer graphene 

coated with PMMA. The floated graphene is rinses multiple times in deionized water. A 

desired substrate can then be slid underneath the floating graphene/PMMA as shown in 

Figure 3.3(g). The substrate containing transferred graphene/PMMA is allowed to dry in 

air and then baked at 220 ˚C above the glass transition temperature of PMMA to allow 

reflow of PMMA in order to heal the wrinkles in graphene. The sample is then dipped in 

acetone for 2-3 hours to remove PMMA from top of transferred graphene. This is followed 

by organic cleaning of the sample in acetone and IPA. One such transferred graphene on 

100 nm thick SiO2 is shown in Figure 3.3(h).  

3.4.2  Graphene chem-FET Fabrication 

For making graphene based FETs we chose 100 nm SiO2/Si substrate. The Si was 

to be served as global back-gate therefore had low resistivity in the range of 0.008–0.02 Ω-
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cm. The graphene was transferred on top of 100 nm SiO2 using process described in 

previous section. The graphene was then coated with photoresist and conventional 

lithography was performed to define pattern on resist. Oxygen plasma was used to define 

pattern on graphene. The resist was then removed in acetone. The patterned graphene was 

again coated with photoresist for second round of lithography to make contacts on 

graphene. The patterns for metal contacts were made using lithography as before. 20 nm 

of Ti and 80 nm of Au were evaporated in e-beam evaporator. The contacts were finally 

formed using metal lift-off in acetone. A finished device is shown in Figure 3.5 where 

graphene channel is formed on top of 300 nm thick SiO2 in between Ti/Au source drain 

electrodes. Figure 3.4 describes these steps schematically. 

3.5  Electrical Characterization of Graphene Devices 

The sensing response based upon conductivity or resistivity changes would depend 

upon material and electrical properties and that of electrical contacts. The properties are 

evaluated through various test structures such as transmission line method (TLM) pads and 

 

Figure 3.5 Optical micrograph of graphene chem-FET showing 20 µm long and 30 
µm wide graphene channel on top of 300 nm SiO2 substrate. The scale bar is 10 µm. 
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Van der Pauw Hall bars etc. It would also be required to evaluate the performance FETs 

for the sensing applications. 

3.5.1  TLM Characterization 

The semiconductor resistance is defined by sheet resistance Rsh. The interaction of 

semiconductor or semimetal (for example graphene) with metal contacts is characterized 

by contact resistance, Rc (Ω) and specific contact resistivity, ρc (Ω-cm2). We want lower 

values of Rc and ρc for better ohmic contact behavior. TLM pads are very simple test 

structure that lets us measure these parameters for metal semiconductor contacts as shown 

in Figure 3.6.[39] The specific contact resistance, ρc, is independent of contact area, 

therefore becomes important term for comparing ohmic contacts of different sizes. When 

the current flows from the channel (material under investigation) to metal contact, it 

encounter resistances such as ρc and Rsh as described in Figure 3.7[39] and goes through the 

 

Figure 3.6 Schematic of TLM pads with various geometrical parameters. A plot of 
total resistance across two pads from IV measurements as a function of pad spacing 
d shows how to extract sheet and contact resistance [39]. 
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path of least resistance. The potential distribution on contact is determined by both ρc and 

Rsh. It is highest at the contact edge and drops exponentially away from the edge. The 

distance over which the voltage drops to 1/e times is called transfer length LT and is given 

by the following expression.  

்ܮ ൌ ඥߩ௖/ܴ௦௛              (3.1) 

The transfer length can be considered as the distance over which most of the current 

transfer from material to metal contact or vice versa. Typical values for contact resistance 

are considered to be ρc ≤ 10-6 Ωcm2 and transfer length in the order of 1 µm for such 

contacts. To determine these parameters for graphene, 200 µm × 200 µm wide 20nm Ti/80 

nm Au pads with varying separation. Figure 3.8(a) shows TLM characterization on device 

for which no annealing was performed. The sheet resistance, Rsh was computed to be 

 

Figure 3.7 The current flow from material to metal contact which follows the path 
of least resistance. The equivalent circuit shown in terms of ρc and Rsh [39]. 

(a) 

(b) 
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834.1Ω/□. The LT was ~3 µm and Rc was 26.6 Ω. The specific contact resistivity, ρc was 

computed from Rsh and LT using Equation 3.1 and was obtained as 2.75×10-4 Ωcm2. This 

value of ρc is on high side but matches well with reported values of contacts on graphene.  

There is a possibility of trapped moistures and PMMA particles and other 

impurities trapped during the graphene transfer process may cause ρc to become higher. To 

investigate this point further a new set of TLM pads were fabricated. This time the samples 

were annealed in forming gas environment for 90 minutes at 400 °C. The forming gas was 

obtained by flowing UHP Ar and H2 at a flow rate of 800 and 200 sccm respectively. The 

TLM measurements performed on one such sample is shown in Figure 3.8(b). The Rsh 

obtained on these annealed devices was 1972 Ω/□ which is more than double for the value 

of graphene that was not annealed. The higher resistance values of graphene could be 

attributed to higher defect density in the as-grown graphene or it could result from 

annealing process. The LT was obtained as ~0.4 µm which resulted ρc of 2.8×10-6 Ωcm2. 

The Rc was found to be 3.8 Ω. These low values of contact resistance and ρc are quite 

 

Figure 3.8 TLM measurement on 200 µm × 200 µm wide Ti/Au on graphene. (a) Metal 
pads deposited with annealing at any stage. (b) The annealing in forming after graphene 
transfer on SiO2 substrate. The metal contacts were deposited after annealing. 



www.manaraa.com

 

54 

impressive and highlights the importance of annealing in transferred CVD graphene for 

device fabrication.  

3.5.2  Graphene Field Effect Transistor 

The current-voltage measurements were performed using a Keithly 2612A System 

Source Meter unit. Figure 3.9(a) illustrates the schematic of global back-gated graphene 

FET and the biasing scheme for the measurement of transistor characteristics. In Figure 

3.9(b) IDS vs VDS family of curves is shown where back-gate bias Vbg varied from -40 to 0 

volt with an increment of ΔVbg of 8V. The VDS was varies from 0 to 1V. This shows p-type 

behavior of transferred graphene in negative Vbg range. The more accurate picture of carrier 

types emerges from transfer characteristics of graphene FET (Figure 3.10)[100] which is also 

referred as chem-FET for its chemical sensing abilities will be discussed later in the 

chapter. The IDS vs. Vbg plot is ambipolar in nature which is a direct consequence of liner 

dispersion relation in graphene with zero band gap. The minimum conductivity point in 

transfer characteristics, also referred as Dirac point, was observed at Vbg of 12 V. The 

  

Figure 3.9 (a) Family of curves for graphene chem-FET showing increase in IDS 
with more negative Vbg indicating p-type behavior. (b) IDS-Vbg transfer 
characteristics of the chem-FET with Dirac point at 12 V, indicating p-type behavior 
of graphene transferred on SiO2.  

(b) (a) 
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positive Dirac point reaffirms that CVD graphene transferred on SiO2 is p-type in nature. 

Another important information about material property that can be obtained from transfer 

characteristics of this device is field-effect mobility, FET, given by the following 

expression.  

ிா் ൌ ݃௠	ܹ/ܮ	ܥ௢௫	 ஽ܸௌ         (3.2) 

Where gm is transconductance, L is length of graphene channel, W is width of the 

graphene channel, Cox is the oxide capacitance per unit area. With improvement in the 

quality of the graphene film we were able to obtain mobility values in the range of 1000 

cm2/Vs on routine basis. Our best FET was calculated as 3424 cm2/Vs. Figure 3.11 shows 

a bar chart illustrating variation of mobility at different places. These variation may result  

Table 3.4 Statistics of mobility values in cm2/Vs for FETs on a single chip 

Number Mean Standard 
deviation 

Minimum Median Maximum 

11 1236.9 903.6 349.7 971.9 3424.6 

  

Figure 3.10 IDS-Vbg transfer characteristics of the chem-FET with Dirac point 
at 12 V, indicating p-type behavior of graphene transferred on SiO2.  
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from already exiting non-uniform defect density in CVD graphene or can be introduced 

during the processing as well. Table 3.4 enlists the statistics of 11 graphene FETs device 

for which mobility was calculated from transfer characteristics. Although a large standard  

deviation of ~900 cm2/Vs exist amongst these devices the mean value of 1236 cm2/Vs is 

fairly impressive. The minimum value of 349.7 cm2/Vs is also much improved from the 

mobility values obtain from the devices in the early phase of CVD optimization for this 

project. 

3.5.3  Hall Measurements 

It is a method of determining transport properties of a material such as resistivity, 

carrier density and mobility. It is based upon Hall Effect in which a magnetic field is 

applied perpendicular to a slab of material which carries a current across it as described in 

Figure 3.12 for a bridge-type Hall bar made of graphene. A constant current is flowed along 

the longitudinal axis of the Hall bar. Due to application of magnetic files charge carrier 

feels a Lorentz force and drift away from the direction of current to perpendicular direction. 

This charge separation creates a potential difference across the electrodes perpendicular to 

  

Figure 3.11 The variation of at different location suggest different defect 
density of graphene at different location  
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the current flow which can be measured as Vxy, as shown in Figure 3.12, also called as Hall 

voltage. To determine the transport properties of the transferred graphene films, Hall bar 

Figure 3.12 Schematic of the bridge-type graphene Hall bar along with 
schematic of the Hall measurement, where B is applied perpendicular to the 
plane of the paper and Hall voltage Vxy is measure across the electrodes 
shown. 

Figure 3.13 Bridge-type graphene Hall bar with 20 µm wide graphene 
channel fabricated by optical lithography using chrome mask and mask 
aligner.  
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patterns were etched and metal contacts were deposited on the transferred graphene film 

using chrome mask as shown in Figure 3.13. Hall bar with graphene film of 20 µm channel 

width was patterned (darker blue contrast). Typical four terminal method is used in these 

experiment, and the experimental bias connections for the measurement of resistance and 

mobility are shown schematically in Figure 3.12. A constant dc current was applied through 

the devices and the voltages Vxx and Vxy were measured across the terminals with a 

magnetic field B varied up to 8 Tesla in perpendicular direction. Out of several devices 

measured so far a majority showed the normal Hall Effect, where the Hall Voltage kept 

increasing with the magnetic field. However, for one device, Hall voltage Vxy from one 

device showed a plateau such as in the quantum hall effect when it is cooled down to 60 

Kelvin, as shown in Figure 3.14(a). This is a very exciting result and clearly conforms the 

quality of graphene film synthesized. The value of the plateau fits in the equation 

௫ܸ௬ ൌ ሺ4݊/݄ܫ ൅ 2ሻ݁ଶ         (3.3) 

 

Figure 3.14 (a). Hall voltage Vxy at T = 60 K from a graphene Hall bar sample 
showing the quantum Hall effect. The plateau of Vxy is shown by an arrow. (b) 
Temperature dependence of carrier mobility μ from the sample which showed the 
quantum hall effect. The red line is the exponential decay fitting. 

(a) 
(b) 
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with n = 5, where n is the Laudau-level index. The charge carrier densities and charge 

carrier mobility values were derived from the hall bar measurement. The charge carrier 

density of p ~1012 cm−2 and mobility at room temperature of µ ~1000 cm2/Vs were found 

for most of the devices. However, the device which showed the quantum hall effect had 

the mobility as high as 5400 cm2/Vs at room temperature and 6600 cm2/Vs at T=l0 K, as 

shown in Figure 3.14(b). An exponential decay function can fit the temperature dependence 

of carrier mobility µ. 

 

Figure 3.15 Schematic of amperometric measurement set up for chemical sensing 
where calibrated test gases (20 ppm NO2, 550 ppm NH3) are delivered to sensor 
under test. The current as a function of time is measure by current preamp and 
recorded by data acquisition system. 
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3.6  Sensing Response of Graphene Chem-FETs 

 The sensing measurements of graphene chem-FETs were carried out using two 

different gases, NO2 and NH3, which behave as electron acceptor and donor,[101] 

respectively. The test bench consisted of a customized probe station in AFM set-up. The 

schematic of sensing set-up is illustrated in Figure 3.15. In this technique a voltage bias in 

the range of 50 to 100 mV is applied to the device by a lock-in amplifier SR830. The 

current is fed to a current preamplifier SR570. The output in the form of voltage as time 

function is read and plotted by a data acquisition system. Test gases such as NO2 is allowed 

to flow at the rate of 500 sccm, using MFCs, on the device after a delay of 60 sec of bias 

tuned on (Figure 3.16(a)).The test gas molecules are then adsorbed on the graphene and 

modify its conductivity. The process of adsorption of a molecule on a surface could be  

 

Table 3.5 Salient distinguishable features of chemisorption and physisorption[102] 

 

broadly of two types, physisorption or chemisorption based upon the interaction between 

the adsorbing surface and adsorbate (gas molecule). In chemisorption chemical bond 

formation is involved between adsorbate and the surface whereas weaker interaction such 

as polarization is involved in physisorption as compared to charge transfer between 

Chemisorption Physisorption 

Charger carrier exchanged in involved Polarization between adsorbate and 
surface 

Chemical bond formation  van der Waals forces are involved 

Stronger interaction, ( ≥ 1eV) Weaker interaction, ( ≤ 0.3 eV), therefore 
stable only at cryogenic temperatures 

highly corrugated potential analogies with 
coordination chemistry 

less strongly directional 
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them.[102] The distinction between physisorption and chemisorption becomes difficult due 

to existence of almost continuous spectrum of interaction strength. However it is possible 

to a broader distinction between them based upon their salient features listed in Table 3.5.  

 Like chemical bond chemisorption is highly directional; and adsorbates stick at 

specific sites therefore binding interaction is strongly dependent upon exact position and 

orientation of the adsorbates with respect to the surface. This feature of chemisorption have 

implication in chemical sensing in general which may be responsible for different rates of 

current or conductivity change in graphene based sensors upon exposure, and withdrawal 

of exposure of analytes to graphene surface. On metal surface the chemisorbed atoms tends 

to attach to the sites offering highest coordination. For example in Pt (111) surface O tends 

to sit at FCC three fold hollow sites with bond energy of ~370kJ mol-1.[103] Since defects 

in general tends to offer more coordination or binding sites therefore defective graphene 

are observed to have better sensing response to analytes as noted in this dissertation as well. 
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Figure 3.16 (a) Gas sensing response of graphene chem-FET at Vbg = 0V towards 
hole donating NO2 and electron donating NH3 in terms of % conductance change. 
(b) Transfer characteristics of the chem-FET in air, 20 ppm NO2 and 550 ppm NH3 
showing a shift of Dirac point.  

(a) 
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In physisorption, adsorbates do not experience strong directional interactions. 

Therefore, they bond more weakly to specific sites and experience an attractive interaction 

with the surface that is much more uniform across the surface. In many cases, the 

interactions between physisorbates are even stronger than the interaction with the surface, 

however in some cases strong chemical attraction from the surface may cause physisorbed 

species to become chemisorbed which could be a possibility for NO2 or NH3 adsorption on 

graphene. 

Irrespective of actual initial mechanism of adsorption the charge exchange between 

graphene and adsorbed molecules, a clear sign of chemisorption, causes the conductivity 

of graphene to change upon exposure of NO2 or NH3 molecules. This results in a change 

in current and is recoded as a function of time. It is very important to highlight here that all 

these measurements are carried under ambient conditions to assess the possibility of 

making practical sensors using graphene. 

Sensitivity of a chem-FET is defined as percentage conductance change caused by 

the flow of the test gas, and calculate as 100×(Ig-I0)/I0, where I0 is the base current in 

absence of the test gas, and Ig is the current in presence of the gas at the given exposure 

time. Figure. 3.15(a) compares the percentage conductance change (as a function of time) 

for the two gases as their flow is turned on and then off. We found that upon exposure to 

20 ppm NO2 for 2 minutes, the conductance increased by 21%, while with 550 ppm NH3 

exposure the conductance decreased by 10%. This behavior is expected, since NO2 being 

an electron acceptor, would increase the density of holes in graphene following adsorption, 

and increase in the conductivity of a p-type graphene. On the other hand, NH3 being an 

electron donor would decrease the density of holes, and hence decrease the conductivity. 
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Notably, the change in conductivity due to NH3 adsorption is much less than that due to 

NO2, in spite of higher concentration of the former, which can be attributed to lower charge 

(0.03q) transfer per molecule from NH3 molecules to graphene compared to 0.3 q per 

molecule of NO2.[101]   

To determine the extent of charge density modulation due to molecular doping by 

NH3 and NO2, we measured the IDS-Vbg characteristics of the device prior to gas exposure 

and compared that to the plots after NO2 and NH3 exposure as shown in Figure 3.16(b). 

The transconductance gm calculated from Figure 3.16(b) at VDS = 1 V was 0.35 S. 

Utilizing this in the formula for field effect mobility FET: 

ிா் ൌ
௚೘௅

ௐ	஼೚ೣ	௏೏ೞ
										        (3.4) 

The mobility was calculated as 10.15 cm2/Vs. The carrier density was then 

computed from the formula, 

݌ ൌ ݐߪ ⁄ߤݍ ൌ ܮܩ ሺܹߤݍሻ⁄         (3.5) 

and at zero gate bias came out to be 3.351012 cm-2, where G is the conductance of 

the graphene film. Although the mobility seems to be rather low, it actually agrees well 

with the carrier mobility in CVD graphene films transferred to SiO2/Si substrates, where it 

is in the range of 20 – 150 cm2/Vs.[104, 105] The low  mobility of transferred graphene could 

be attributed to fixed charges trapped at the SiO2/graphene interface[106] and relatively 

larger defects in graphene causing more scattering of charge carriers. From Figure 3.16(b) 

the IDS-Vbg curve was found to be shifted to the right by 8 V upon 20 minutes of exposure 

to NO2, which indicates further p-type doping due to adsorption of electron withdrawing 

NO2 molecules. The same duration of exposure to NH3 resulted in the IDS-Vg curve shifting 

to the left by 6 V, which is due to n-type doping caused by the electron donating NH3 
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molecules. The change in carrier density due to the molecular doping can be obtained from 

the adsorption induced shift in transfer characteristics using the equation,[1] 

݊߂ ൌ ൫଴ ஽ܸ௜௥௔௖,௚௔௦൯/ݐݍ௢௫      (3.6) 

where  is the dielectric constant of SiO2 (3.9), 0 is the vacuum permittivity, tox is 

the oxide thickness (100 nm), q is the electronic charge, and Vୈ୧୰ୟୡ,୥ୟୱ is the change in 

the Dirac point due to the molecular adsorption. From the shift in Dirac point in the two 

cases, changes in carrier density can be computed as 1.731012 and 1.291012 cm-2 for NO2 

and NH3, respectively. The fractional changes in conductivity (= p/p) for NO2 and NH3 

for 20 min is computed as 51.6% and 38.5%, which are typically observed for our devices 

where the 2 minutes exposure resulted in changes of 21 and 10% for NO2 and NH3, 

respectively. 

 

3.7  Sensitivity Tuning in Chem-FETs 

The modulation of the Fermi level of graphene by back-gate bias is expected to 

strongly affect the sensitivity of the chem-FET toward various gas molecules. This concept 

was systematically investigated in this work by varying the back-gate bias of the graphene 

chem-FET devices from -45 V to 5V, and recording the sensitivity toward NO2 and NH3 

at each bias step.  The dependence of sensing responses on back gate bias for NO2 and NH3 

are shown in Figure 3.17(a, b). From Figure 3.17(a) graphene’s sensitivity which is defined 

as percentage conductance change, was found to decreases from 26.1% to 3.6% for 20 ppm 

NO2 as Vbg changed from 5 to -35V. The opposite trend was observed for NH3 in Figure 

3.17(b) where the sensitivity decreased from 7.6% to 0% as Vbg changes from -30 to 5V. 

There are two factors that can affect the conductivity change due to gaseous adsorption, 
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, which is inversely proportional to the initial carrier concentration before adsorption, 

p0, and directly proportional to the change in carrier concentration due to gas adsorption, 

p. Since the transferred graphene on SiO2 is p-type in nature, a positive gate bias would 

reduce the hole concentration. With fractional change in conductivity, given by the relation 

ߪ∆ ⁄ߪ ൌ ݌∆ ⁄݌         (3.7) 

an increase in p0 would certainly reduce the sensitivity toward the adsorbed 

molecules even if p remains constant. It would be interesting if the corresponding 

movement of the Fermi level, in response to the change in back-gate bias, affects p, the 

charge transfer between the adsorbed molecules and graphene film. To investigate this, p 

was calculated from the experimentally measured  and Δσ/σ due to gaseous adsorption at 

each voltage bias.  

For a 30  30 μm device, the initial carrier density, pሾൌ ݐߪ ⁄ߤݍ ൌ ܮܩ ሺܹߤݍሻ⁄ ሿ at 

Vbg = 5V is calculated as 3.161012 cm-2, where G is the conductance of the graphene film. 

The calculated values of carrier concentration at each voltage bias are shown in Table 3.6. 

 

Figure 3.17 Variation of back gated graphene sensor response for (a) 20 ppm NO2 
exposure with the increase in gate bias from negative to positive values and (b) 550 ppm 
NH3 exposure with the gate bias change from negative to positive values.  

(b) (a) 
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For our calculations, we assumed  = 10.15 cm2/Vs as calculated earlier for this device. 

The mobility was assumed to remain constant over the back-gate bias range considered (5 

to -45 V), as gm (the slope of IDS-Vbg curve) was found to remain fairly constant over that 

range in Figure 3.16(b).  From Figure 3.17(a) we find that for Vbg = 5 V, the fractional 

change in conductivity /  due to NO2 adsorption is 0.261. Utilizing the relation 

ሾ∆ߪ ⁄ߪ ൌ ݌∆ ⁄݌ ሿ and the value of p for that bias from Table 3.6 (column 3), the change in 

carrier density, ∆݌ேைమis calculated as 8.251011 cm-2. The calculated values of ∆݌ேைమ are 

summarized in column 4 of Table 3.6, where the charge transfer doping ∆݌ேைమis found to 

decrease from 8.251011 cm-2 to undetectable as Vbg decreases from 5 to -45 V. Following 

a similar process p and ∆݌ேுయ were calculated for NH3 adsorption for different Vbg, and 

are shown in Table 3.7. In contrast to NO2, and affirming its donor like behavior, the charge 

transfer doping ∆݌ேுయis found to increase from undetectable to 3.391011 cm-2 as Vbg 

 

Figure 3.18 Band diagrams showing movement of Fermi level in back gated 
graphene chem-FET as a result of gate bias and NO2 adsorption at (a) no bias, (b) 
positive and, (c) negative gate bias. Fermi level moves downward upon exposure to 
NO2 in all 3 cases due to increase in hole concentration. 

.  

(a) (b) (c) 
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decreases from 5 to -30 V. Since NO2 forms acceptor states (unoccupied molecular 

orbitals) below the Dirac point,[107] more negative gate bias would lower the Fermi level 

and bring it closer to acceptor state energy level, so the magnitude of charge transfer 

 ேைమሻ between NO2 molecules and graphene would reduce. Figure 3.18 shows the band݌∆)

diagrams with acceptor and the Fermi energy levels for different gate biases. Since the 

charge transfer is a self-limiting process, its rate will also depend on the energy difference 

between the Fermi level and the acceptor level; hence ∆݌ேைమ corresponding to a given time 

interval, for instance 120 s in our experiments, will be dependent on Vbg, as observed 

experimentally (Table 3.6). The reverse is observed for electron donor NH3, which forms 

donor states above the Dirac point, therefore a change in Vbg to more negative values causes 

the Fermi level to move downward, increasing the energy difference and hence the 

magnitude and rate of charge transfer doping.  

The Fermi level position for each back gate bias can be calculated using the 

equation,[13] 

ிܧ ൌ ඥ	݌ߨሺħ߭ிሻଶ,     (3.8) 

where EF is the Fermi level position relative to the Dirac point. The change in Fermi 

level due to molecular adsorption EF,ads (=	E୊౥ െ E୊భ) can also be calculated using: 

∆݊௔ௗ௦ ൌ ห൫ܧிభ
ଶ 	െ	ܧிబ

ଶ൯ห ⁄ሺħ߭ிሻଶߨ       (3.9) 

and setting E୊౥= 0, where E୊౥and E୊భ are the initial and final Fermi levels, 

respectively, nads is the adsorption induced change in charge carrier density, and νF is the 

Fermi velocity of electrons (108 cm/s).[108] 
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Table 3.6. Effect of back gate bias on initial carrier density, Fermi level position, and 
charge exchange due to flow of NO2 

Back 
gate bias 

(V) 

Initial 
Conductance 
(µS), (change 

in %) 

Initial carrier 
density, po 

(cm-2) 

Adsorption  
induced 

carrier density 
change (cm-2), 

Δp 

Fermi 
level 

position 
EF (meV)  

Adsorption 
induced 

Fermi level 
change ΔEF 

(meV)  
5 5.13 (26.1) 3.161012 8.251011 207.5 106.0 

-5 5.32 (22.2) 3.281012 7.281011 211.3 99.6 

-15 5.88 (17.8) 3.621012 6.451011 222.2 93.7 

-25 7.09 (10.8) 4.371012 4.721011 243.9 80.2 

-35 9.04 (3.6) 5.571012 2.001011 275.4 52.2 

-45 10.87 (0) 6.691012 Below 
detection limit

302.0 Below 
detection 

limit 
 

Table 3.7. Effect of back gate bias on initial carrier density, Fermi level position, and 
charge exchange due to flow of NH3  

Back 
gate 
Bias 
(V) 

Initial 
Conductance 
(µS), (change 

in %) 

Initial 
carrier 

density, po 

(cm-2) 

Adsorption  
induced 

carrier density 
change (cm-2), 

Δp 

Fermi 
level 

position EF 
(meV) 

Adsorption 
induced 

Fermi level 
change ΔEF 

(meV) 
-30 7.25 (7.6) 4.461012 3.391011 246.6 68.0 

-25 6.93 (6.76) 4.271012 2.881011 241.1 62.7 

-20 6.54 (6) 4.021012 2.411011 234.2 57.4 

-15 5.93 (4.5) 3.651012 1.641011 223.0 47.3 

-10 5.24 (3) 3.231011 9.691010 209.7 36.3 

0 4.17 (1.36) 2.571011 3.491010 187.0 21.8 

5 4.08 (0) 2.511011 Below 
detection limit 

185.0 Below 
detection 

limit 
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The pre-exposure Fermi level and its shift caused by NO2 and NH3 molecular 

doping are also summarized in Tables 3.6 and 3.7. We find for NO2, as the initial Fermi 

level moves downward, the change in Fermi level due to adsorption EF,ads reduces 

monotonically, as expected from discussions earlier. Furthermore, the combined value of 

initial EF and EF,ads is ~320 meV at different back-gate biases. From this observation, it 

can be argued that the acceptor energy level of NO2 is ~320 meV below the Dirac point. 

This is in excellent agreement with the reported theoretical and experimental values of NO2 

acceptor energy level of 300 – 400 meV.[101, 109] For NH3, the reverse trend is observed, i.e. 

as the Fermi level moves downward, its change due to adsorption increases. The change in 

conductivity is undetectable at Vbg = 5 V, for which the Fermi position is calculated to be 

 

Figure 3.19 Sensitivity response plotted for 20 ppm NO2 and 550 ppm of NH3 as 
a function of Vbg. The selective NO2 detection could be possible at Vbg of 5V and 
selective NH3 could be had at Vbg of -40V. 
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~185 meV below the Dirac point. This is in contrast to earlier reports of NH3 donor energy 

level, which is generally expected to be above the Dirac point.[101] 

It is interesting to note here that for p-type graphene the carrier concentration 

change and the Fermi level movement act together to enhance the detection sensitivity for 

both donor and acceptor type gases. Thus, the sensitivity for gaseous detection for p-type 

graphene can generally expected to be higher than that of n-type graphene for acceptor type 

molecules such as NO2. In addition, it has been demonstrated here for the first time that 

molecular doping by adsorbed gas molecules depends on the position of the Fermi level 

relative the donor/acceptor states and it can be tuned by appropriate back gate bias. 

However, whether the back-gate bias simply affects charge transfer between adsorbed 

molecules and graphene, or it affects the density of the adsorbed molecules, or a 

combination of both, needs to be investigated further. 

 

3.8  Selectivity in Graphene Chem-FETs 

It could be possible to impart selectivity towards NO2 and NH3 in graphene chem-

FETs as shown in Figure 3.19. At positive Vbg of 5V in the figure, the sensitivity of NH3 

is almost 0% whereas NO2 response is ~26%. Therefore at 5V back-gate bias the graphene 

chem-FET will detect NO2 selectively in a mixture of NO2 and NH3. Similarly to have 

selective NH3 response the chem-FET should be operated at Vbg of ~40 V. In this chapter 

we saw the effectiveness of graphene chem-FET to show a tunable sensitivity towards polar 

analytes (NO2 and NH3) with possibility of selectivity while operating close to defect level 

of the analyte in the graphene.  



www.manaraa.com

 

71 

In summary graphene based chem-FETs were fabricated by developing graphene 

transfer and graphene device processing by photolithography and other techniques. TLM 

pads and Hall bars were characterized to gauge various parameters for device performance 

such as mobility, carrier concentration, specific contact resistivity etc. The tuning of 

sensitivity of chem-FETs was achieved by use of a back-gate bias. However the sensitivity 

remains fairly low in the range of 50-60 %. In the following chapter the strategy to enhance 

the sensitivity towards polar molecules and sensing of nonpolar molecules by 

functionalization will be discussed. 
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CHAPTER 4 

SENSITIVITY MODULATION 

 

In the short span of a decade since its first isolation in year 2004 graphene has 

shown a great promise as a sensing material. Different sensing methodologies have been 

demonstrated such as change in conductivity, surface work-function, frequency of surface 

acoustic waves and 1/f noise spectrum to detect various analyte molecules in very low 

concentration. Amongst these modality, conductivity appears to be commercially viable 

modality for chemical sensing. The adsorbed molecules change the conductivity of 

graphene by charge exchange between them. This change can be readily monitored in time 

dependent amperometric measurements. The graphene based sensors operating in this 

mode are termed as chemiresistors. In general graphene chemiresistors suffers from low 

sensitivity values not exceeding 100% towards ppm level NO2 and other analytes. In this 

chapter we will discuss and propose the means to improve sensitivity of graphene based 

sensors working in amperometric mode.  

4.1  Methods of Chemical Sensitivity Modulation 

4.1.1  Sensitivity Modulation by Use of a Back-gate Bias 

 Graphene chem-FETs have been demonstrated to improve sensitivity towards NO2 

and NH3 as discussed in previous chapter. The use of global back gate modulates carrier 

concentration and also graphene Fermi level. The sensitivity changes from very low to a 
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value as high as 26% in case of NO2 as Fermi level moves with different back-gate bias. 

This is one way to enhance sensitivity, however the sensitivity number remains low since 

sensitivity is directly proportional to numbers of molecules adsorbed to the graphene 

surface to dope it. One way to improve the sensitivity number would be to increase the 

number of adsorbed molecules for a given concentration by increasing the capture site in 

the graphene. 

4.1.2  Sensitivity Modulation by Defects 

 The sensitivity of graphene based sensors devices are strongly affected by the 

presence of defects in graphene, which can be in the form of grain boundaries, vacancies 

or point defects, dopants, wrinkles, change of hybridization from sp2 to sp3 or simply 

atomic discontinuity at the edge.[41]  Defects in graphene are generally introduced during 

their growth or during subsequent processing for making electronic devices. They can also 

be introduced by irradiation of electrons and ion-beams to graphene.[110]  In general, the 

nature and extent of defect depends upon the technique of making graphene. Some 

techniques result in graphene with low defect density, such as exfoliation, which can 

produce graphene with edge discontinuity as the only defect, which is unavoidable. 

Chemical derivation of graphene, such as reduced graphene oxide, tends to be more 

defective in general, due to incomplete reduction of graphene oxide. The popular methods 

of making large area or wafer size graphene, such as CVD and epitaxial, can also introduce 

defects. 

 Defects in a material generally tend to degrade their physical properties. However 

in graphene material system the defects can be exploited to tailor the local properties of the 

graphene to impart new functionalities. Banhart and co-workers have reviewed point and 



www.manaraa.com

 

74 

line defects, and reconstructions of graphene lattice around these intrinsic defects leading 

to interesting effects and potential application along with the roles of extrinsic defects such 

as foreign atoms.[111] Defect density can also affect chemical sensing and broad band photo 

detection of graphene based sensors. Theoretical calculations using density functional 

theory has been used to predict the sensitivity of pristine, B-doped, N-doped, and defective 

graphene.[112] The adsorption energies of CO, NO, NO2 and NH3 were determined for the 

above mentioned graphene. The adsorption energy was found to be largest for defective 

graphene and CO, NO, NO2 combination, whereas in case of NH3
 it was B-doped graphene. 

These calculations suggests that the defective or doped graphene have higher propensity to 

adsorb gaseous molecules by virtue of their increase in adsorption energy or an increase in 

the adsorption sites.[112]  

We have also found similar sensitivity improvement for NO2 using defective 

graphene. Figure 4.1 illustrated this effect where inset shows the Raman spectrum 

 

Figure 4.1 The role of defect in sensitivity enhancement. (a) The response of 21% for a 
low defect (ID/IG = 0.23 from Raman in inset) graphene chemiresistor. (b) A higher 
response of 64% for a highly defective (ID/IG = 1.52) chemiresistor. 
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characterizing the defects in graphene chemiresistor. The device with low defect density 

(ID/IG = 0.23) shows a response of 21% upon exposure to 20 ppm NO2 for 4 minute duration 

in Figure 4.1(a). Figure 4.1(b) shows sensitivity improvement to 64% under same test 

condition for a highly defective (ID/IG = 1.52) graphene chemiresistor. The sensing 

response in these two types of graphene chemiresistor with different defect density is the 

result of change in conductivity, as discussed in section 3.6, due to charge carrier exchange 

between chemisorbed NO2 and graphene. Liang and co-worker have modeled[113] 

adsorption-desorption kinetics in carbon nanotubes and graphene based sensors by 

modifying kinetic Langmuir model. In this model a fraction molecules that are exposed to 

the surface will stick and adsorb in direct proportionality to number or concentration of 

available sites. This model addresses the incomplete recovery of the property such as 

conductivity by proposing two-types of adsorption sites, normal sites and poison sites. At 

poison sites the adsorbates bond very strongly as compared to normal site so that the time 

scale of desorption becomes much larger than the time scale of sensing measurements. 

Defects in graphene had been suggested to be the source of these poison sites. Once 

occupied they reduce graphene’s sensitivity towards further exposure of analytes in 

subsequent measurements. Therefore these defects behave same as catalyst poising and has 

been characterized by different sticking coefficient in the model of Liang et. al.[113]  

This model therefore suggest that more number of defects or poison sites will 

reduce the ability of the graphene sensor to recover after exposure to analytes despite the 

fact that more defects will increase the sensing response. This was observed in our 

measurements during recovery of graphene chemiresistors. The low defect sensor in Figure 

4.1(a) shows a higher recovery of ~71% from a value of 21% Δσ to 6% Δσ for a duration 



www.manaraa.com

 

76 

of 5 minutes of recovery after the NO2 exposure was stopped, as compared to smaller 

recovery of ~40% in highly defective graphene in Figure 4.1(b) where Δσ dropped from 

70% to 40% in the same duration of 5 minutes of recovery. In defective graphene we did 

observe the enhancement of about 3 times in sensitivity which is quite impressive but 

comes with a cost of longer recovery duration. Moreover despite of significant 

improvement of sensitivity in graphene chemiresistors by introduction of defects, these 

sensitivity values still remains fairly low due to liner dependence of conductivity change 

with number of adsorbed molecules.  

4.2.3  Sensitivity Modulation by Heterostructure 

 In a simple graphene based chemiresistor or chem-FET the carrier transport in the 

device is governed by simple Ohm’s law, ܫ ∝  where I is current in the device, q is ,ܧ݊ߤݍ

electronic charge, µ is mobility, n is carrier concentration, E is electric field across the 

device. The change in current caused by adsorbed gases,  ∆ܫ ∝ ∆݊ is linearly proportional 

to the transduction mechanism as illustrated in Figure 4.2(a) with the help of graphene band 

structure. However in diode structures the transport across the junction formed by a metal 

and a semiconductor is governed by thermionic emission model given by:[114] 

ܫ ൌ ௌܫ ቂ݁݌ݔ ቀ
௤௏

ఎ௞்
ቁ െ 1ቃ ൌ ݌ݔଶ݁ܶ∗ܣܣ ቀെ

థಳ
௞்
ቁ ቂ݁݌ݔ ቀ

௤௏

ఎ௞்
ቁ െ 1ቃ      (4.1) 

where ܫௌ is the reverse saturation current, A is the Schottky contact area, A* is the 

effective Richardson Constant, η is the diode ideality factor, T is the temperature, ߶஻ is the 

Schottky barrier height (SBH), and k is the Boltzmann constant. In reverse bias operation 

of a Schottky diode the magnitude of current is very small and is given by ܫௌ term of the 

equation. The reverse saturation current is exponentially dependent upon the SBH,	߶஻. The 
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SBH is determined by the difference of metal work function and semiconductor electron 

affinity.  

If we happen to make a Schottky diode by use of graphene, semiconductor 

heterostructure then SBH will be determined by the difference of graphene’s Fermi level 

and semiconductor’s electron affinity as illustrated in Figure 4.2(b) with the help of 

graphene/p-Si equilibrium band diagram. The Fermi level of graphene is tied to carrier 

concentration in graphene by virtue of its atomic level thickness. The exposure of analytes 

on graphene surface will move its Fermi level up or down depending upon the type of 

doping. Now we will have ∆ܫ௦ 	∝ 	 exp	ሺ∆߶஻ ∝ ∆݊ሻ and the current in reverse bias will 

respond exponentially to number of adsorbed molecule in graphene semiconductor 

 

Figure 4.2 (a) In lateral transport, whether defect mediated or back gate modulated, 
the change in current, ΔI,  is directly proportional to number of adsorbed molecules, 
Δn, for chemical sensing, (b) where as in vertical transport across a 
graphene/semiconductor heterostructure, ΔI can be exponentially dependent upon Δn. 

(b) 
(a) 
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heterostructure Schottky diode. Such chemical sensing device is expected to give highly 

sensitivity response to very low concentration of analytes. To test this hypothesis we 

fabricated graphene/Si Schottky diodes. 

4.2  Fabrication of Graphene/Si Diodes 

The fabrication of graphene/Si diodes can be categorized in 3 stages of processing. 

1) Processing of graphene 

2) Preparation of SiO2/Si substrate 

 

Figure 4.3 The main processing steps for the pattering of graphene before transfer 
on the patterned substrate by series of steps such as photolithography, O2 plasma 
etch, PMMA coating and Cu removal. 
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3) Graphene transfer and post processing 

4.2.1  Processing of Graphene 

For these graphene/Si unique device structure we did not have readymade mask for 

patterning so we had to improvising upon the available processing technique. For this 

reason entire processing was broken into three broad processing. This first one required the 

pattering of graphene on copper foil itself before transferring it on the substrate. The 

lithography on transferred graphene was avoided in order to minimize the introduction of 

processing related defects in graphene. The sequence of major processing steps are 

illustrated in Figure 4.3.The very first step was to pattern graphene in sub mm wide stripes. 

For this purpose a homemade mask of Al foil having sub mm width window opened by a 

razor blade was employed. Figure 4.4 illustrates this mask on glass slide where masking 

material was Al foil and scotch tape composite. 1813 photoresist was coated at 4000 rpm 

for 30 sec duration to perform the positive resist lithography. Strips were defined by O2 

plasma etch in RIE chamber. Thereafter patterned graphene on Cu was heated in acetone 

at 60 °C for 10 min to remove the resist.  Then Cu foil with graphene strips was coated 

 

Figure 4.4 Homemade mask on Al foil for defining sub mm size stripe of 
CVD graphene on Cu foils  
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with two layers of poly methyl methacrylate (PMMA), to add mechanical strength during 

subsequent processing, and baked for 1 min at 150 C. Next, the graphene layer on the 

back side of the sample was removed by oxygen plasma etching, which was followed by 

Cu etching in 0.5 M ammonium persulfate solution for more than 12 hour, releasing the 

graphene/PMMA bi-layer.[115] 

 

 

Figure 4.5 The processing steps for the pattering SiO2/Si substrate and deposition 
of metal contacts on Si. 
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4.2.2  Processing of SiO2/Si Substrate  

The p- and n-Si used in this work lightly doped and have resistivity in the range of 

1-10 Ω-cm. This light doping ensures the contact with graphene to remain Schottky. Both 

types of Si has 100 thick dry thermal oxide on them. The SiO2 on both p- and n-Si has been 

selectively removed by 1:5 diluted buffered HF. The processing steps are described in 

Figure 4.5. Ti/Au was deposited on the back side and selectively on top side of Si using a 

shadow mask. The sample was then annealed in forming gas atmosphere at 400 C for 90 

 

Figure 4.6 The graphene transfer process on top of patterned SiO2/Si substrate 
is shown here schematically. 
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minutes to make ohmic contacts. The forming gas was obtained by flow Ar and H2 at 800 

and 200 sccm respectively. 

4.2.3  Graphene Transfer and Post Processing   

 Graphene/PMMA bi-layer was rinsed thoroughly in deionized water and IPA. The 

patterned SiO2/Si substrate congaing annealed Ti/Au ohmic contacts were dipped in BOE 

for 10 sec in order to remove native oxide just prior to graphene transfer. The patterned 

substrate was then inserted under the graphene/PMMA bi-layer floating in IPA. It was 

carefully aligned so that the graphene stripe remains perpendicular to etched SiO2 edge on 

Si substrate. The solvent is then removed carefully to let graphene/PMMA to settle down 

gently on the substrate. Figure 4.6 captures this part of processing. It was then baked at 220 

C for 5 minutes to reflow the PMMA resulting in more uniformity and less cracking in 

transferred graphene. Finally, the sample was placed in acetone for 2 hour to remove 

PMMA.[115, 116] Ti (20 nm)/Au (80 nm) contacts were evaporated on graphene transferred 

on SiO2/Si using shadow mask.  

 

4.3  Characterization of Graphene/Si Diode 

4.3.1  Raman Characterization of Graphene/Si Diode 

It is possible to learn the amount of defects generated in graphene during the 

processing by Raman spectroscopy by D peak intensity. Figure 4.7(a) shows the Raman 

spectrum for the as-grown CVD graphene on copper foil, which was used for the diode 

fabrication, showing signature D, G, and 2D peaks. The ID/IG ratio of 0.2 indicates good 

quality of the graphene. The IG/I2D ratio of 3.9 and 2D peak full width at half maximum 

(FWHM) of ~21.33 cm-1 indicates the presence of single layer graphene.[45] Raman spectra 
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of graphene transferred on Si and SiO2/Si substrates from the graphene/p-Si devices are 

also shown in the middle and bottom panels of Figure 4. 7(a). The ID/IG ratio of 0.2 and 

0.12 suggest that the quality of graphene remains preserved by and large during the transfer 

process. The extra defects are not generated during the device processing as well, 

highlighting the robustness of graphene device processing.  

Figure 4.7(b) captures the optical micrograph of one of the graphene/p-Si diode. 

Annealed Ti/Au electrodes are seen at the right corners with rough morphology. Whereas 

the same Ti/Au contacts, deposited separately, on graphene appear to have smooth 

morphology in absence of annealing. It was determined from TLM characterization that 

forming Ohmic contact on graphene by Ti/Au does not require annealing. Graphene can 

 

Figure 4.7 (a) Representative Raman spectra of CVD graphene grown on copper 
(top panel), transferred on Si (middle panel) and SiO2/Si (bottom panel) substrate 
showing the characteristic G, D and 2D peaks. (b) Optical micrograph of a 
graphene/p-Si Schottky diode illustrating transferred graphene on SiO2 and p-Si, 
Ti/Au contact on graphene and annealed Ti/Au contact on p-Si. The scale bar is 
200 µm.  

(a) (b) 
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be seen on top of SiO2 at location 1 due to contrast generated with thin film of SiO2 whereas 

no contrast is generated for graphene on top of Si. This is again indicative of the 

optimization achieved in clean transfer and processing. 

 

4.3.2  Current-Voltage Characterization of Graphene/Si Diodes 

Electrical characterization of the graphene/Si heterojunction showed Schottky type 

current-voltage (I-V) characteristics, which is in agreement with earlier reports.[117] A 

voltage bias was applied to the Si contact for both p- and n-Si diodes and the graphene 

contact was kept as ground. Representative I-V characteristics for graphene/p-Si and 

graphene/n-Si heterojunction Schottky diodes are shown in Figure 4.8. In both cases, the 

diode current increases exponentially with voltage initially (up to ~ 1V, see inset plots), 

before being dominated by series resistance. Nonetheless, these results are consistent with 

recent reports,[117] indicating that graphene forms Schottky contact with both n-type and p-

type Si. This is expected since the reported work function for graphene of 4.5 eV is about 

midway between the work functions for p-type and n-type Si with electron affinity of 4.05 

eV and bandgap of 1.12 eV at room temperature. Examining the insets in Figure 4.8, we 

find that in reverse bias the current increases monotonically with increasing bias magnitude 

This is because with increase in reverse bias graphene’s work function changes (due to 

change in carrier concentration), which causes a lowering of the SBH.[118, 119] The insets of 

Figure 4.8(a,b) show the logarithmic I-V plots for graphene Schottky junctions with p- and 

n-Si, respectively. Using these plots, and the measured area of 910-3 cm-2 and A* values 

of 46.32 and 252 Acm-2K-2 for p-Si[120] and n-Si,[121] respectively, we find  = 4.88, and 

B = 0.65 eV for the former, and  = 3.7 and B = 0.71 eV, for the later. These values are 
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in close agreement with those reported recently.[119, 121] Notably, for these junctions,  > 1 

is commonly observed, which has been attributed to barrier height variation with reverse 

bias arising from graphene’s bias dependent work function, image charge induced Schottky 

barrier lowering, and Schottky barrier inhomogeneity.[118, 119, 122] 

4.3.3 Diode Current-Voltage in Different Environment 

 Upon establishing the Schottky behavior of the fabricated devices, the current-

voltage characteristics were performed under different experimental conditions to assess 

their suitability in chemical sensing. 20 ppm NO2 and 550 ppm NH3 was used to study the 

responses in both dark and illuminated (using light from a halogen lamp using a fiber optic 

 

 

Figure 4.8 Current-Voltage (I-V) characteristics of (a) graphene/p-Si and (b) 
graphene/n-Si devices showing rectifying behavior. I-V characteristics in 
logarithmic scale shown in the inset exhibit 4 and 3 orders of magnitude change in 
current for graphene/p-Si and graphene/n-Si devices, respectively. 
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cable) ambient conditions. The reverse bias I-V characteristics of the graphene/p-Si diode 

sensor recorded after different durations of exposure to NO2 and NH3 are shown in Figure 

4.9(a, b) respectively. We find that with NO2 exposure, the current increases dramatically 

both in dark and illuminated conditions due to lowering of the SBH. For example, at -4V 

bias, the current increased more than 8 times from 1.2 to 9.8 μA (a change of 716 %) with 

 

       

Figure 4.9 Reverse bias current-voltage characteristics of graphene/p-Si in dark and 
in illumination for different exposure times of (a) NO2 and (b) NH3. The solid curves 
correspond to measurements in dark condition and dotted curves to those under 
illumination. The black (both solid and dotted) curves represent pre-exposure 
characteristics, while the red and blue curves represent those after 10 minutes and 30 
minutes of gas exposure. Reverse current across the graphene/n-Si heterojunction 
device (c) is increasing for NO2 and (d) decreasing for NH3. 
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30 minutes of NO2 exposure in dark, while it increased from 13.9 to 24.9 μA (a change of 

79 %) for the same duration under illumination. In contrast, for NH3 exposure the change 

(reduction) in current is rather small in dark (13.6%), but improves under illumination 

(Figure 4.9(b)), with the current decreasing from 30.5 to 17.4 μA after 30 min exposure (a 

change of 43%). The response for NO2 is extremely large, and to the best of our knowledge 

have not been observed with any graphene based sensor in ambient conditions till date. 

For, Graphene/n-Si devices, similar responses have been obtained, i.e. NO2 response 

(Figure 4.9(c)) is large and increases with exposure time, while for NH3 (Figure 4.9(d)), 

there is clear distinctive response in presence of both dark and light, but it saturates quickly. 

4.3.4 Capacitance-Voltage Measurements 

To determine the magnitude of change in SBH at graphene/Si heterojunction due 

to molecular adsorption, capacitance-voltage (C-V) measurements were performed (i) in 

air at steady state, (ii) after 20 min of 20 ppm NO2 exposure, and (iii) after 20 min of 550 

ppm NH3 exposure. The 1/C2 vs. VR plots obtained for 20 min of NO2 and NH3 exposure 

are compared to those obtained prior to gas exposure in Figure 4.10(a). The built-in voltage, 

Vbi can be determined from the relationship between the C-2 and applied reverse bias VR 

given as: 

ଶିܥ ൌ ଶሺ୚್೔ା௏ೃሻ

௤∈ೄேಲ/ವ
		      (4.2) 

Here q is the electronic charge, s is the semiconductor permittivity, and NA/D is the 

acceptor/donor doping.[123] From extrapolating the plots, the built-in voltages (Vbi) are 

determined as 0.69 eV for pre-exposed condition, and 0.46 and 0.85 eV after 20 min 

exposure to NO2 and NH3, respectively. The graphene/p-Si SBH is given as, ϕB = Vbi + (EF 

– EV), where EF is the Fermi level and EV is the valance band edge of Si. EF – EV is 
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estimated to be ~ 0.2 eV for the p-type Si used from the resistivity of 1 – 10 cm specified 

by the manufacturer.  Thus, the pre-exposed SBH becomes 0.89 eV, which is in good 

agreement with earlier results.[119, 124] Figure 4.10(b) illustrates the time evolution of Vbi 

from initial steady state value in ambient condition, as the 20 ppm NO2 flow is started over 

the sensor and stopped, and 550 ppm NH3 flow is started and stopped, successively. As 

expected, we find that Vbi keeps on decreasing from the initial steady state value of 0.69 

eV upon exposure to NO2, and then recovers back close to the initial value as the NO2 flow 

is stopped. It further continues to rise with NH3 exposure, and recovers back to the original 

steady state value as the NH3 flow is stopped. We find that the change in Vbi, and hence in 

SBH, due to NO2 exposure is larger than that due to NH3 exposure (0.23 and 0.16 eV, 

respectively, in 20 min), in spite of the much higher concentration of the later. This can be 

attributed to the weak electron donating nature of NH3 (0.03q) compared to the strong 

electron accepting (0.3q) nature of NO2.[101] The SBH determined from C-V measurements 

 

Figure 4.10 (a) Built-in voltage extracted from the C-2 vs. reverse voltage plot for 
graphene/p-Si in ambient condition (black square), in NO2 (blue triangle) and in NH3 
(red hexagon). The gas exposure duration was 20 minutes for both NO2 and NH3. (b) 
Time evolution of extracted built-in voltage in the different conditions: in ambient 
air, NO2 exposure, at recovery, NH3 exposure and at recovery again. 
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is higher than that obtained from I-V measurements, i.e. 0.89 and 0.65 eV, respectively for 

graphene/p-Si diodes (steady state value in ambient). The difference can arise partly from 

the uncertainty in determining EF – EV (see above discussions), and also from Schottky 

barrier inhomogeneity and additional leakage paths at the junction, which generally 

underestimates the SBH determined from I-V measurements.[118, 119, 122] 

4.4  Graphene/Si Chemi-Diode Performance 

4.4.1  Forward Bias verses Reverse Bias Sensing in Chemi-Diode 

Compared to the sensing responses observed in reverse bias, the forward bias 

responses for both NO2 (20 ppm) and NH3 (550 ppm) are significantly lower, i.e. 92% and 

6.5% at 4V bias for graphene/p-Si Schottky diode, compared to 716% and 43% for 4 V 

reverse bias, respectively. The change in the entire I-V characteristics of the diodes with 

 

Figure 4.11 Complete current-voltage characteristics of graphene/p-Si 
diode under optical illumination and under dark conditions with 10 and 30 
minute duration of 20 ppm NO2 exposure. 
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NO2 and NH3 exposure is shown in Figure 4.11. This can be attributed to the effect of diode 

series resistance which becomes significant for forward bias operation, as discussed earlier. 

Similarly, our responses of 43% obtained at -4V bias for 550 ppm NH3 is much improved 

 

 

Figure 4.12 (a) Device schematic and biasing scheme of graphene chemiresistor 
and graphene/Si Schottky diode sensor fabricated on the same chip. Chemiresistor 
is a case of lateral transport where current is proportional to number of charge 
carriers in graphene. Whereas the carrier transport across the vertically stacked 
graphene/p-Si heterojunction results in current that is exponentially dependent upon 
SBH under reverser bias condition. (b) The energy band diagram of Graphene/p-Si 
heterostructure in three different conditions, showing reduction in SBH for NO2, 
and increase in SBH for NH3 exposure, as compared to the pre-exposure condition. 

(a) 

(b) 
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compared to the forward bias response of only a few percent obtained for graphene/Si 

Schottky diode sensor for 4% NH3 as reported in reference 15. Although, biasing the diode 

in the sub-threshold region can minimize the effect of diode series resistance, it is difficult 

to reliably bias a sensor in this region due to environmental factors affecting the turn-on 

voltage. In addition, it would not be possible to tune the diode sensitivity in forward bias 

as it can be done in reverse bias. 

4.4.2  Chemi-Diode verses Chemiresistor 

To make a direct comparison of the performance of the graphene/Si heterojunction 

diode sensor and conventional graphene chemiresistor type sensor, both the devices were 

fabricated side by side on the same chip from the same transferred graphene film. The 

chemiresistor was fabricated on SiO2 covered area of a Si substrate, while the 

heterojunction diode sensor was fabricated on bare Si with SiO2 etched away, as shown 

schematically in Figure 4.12(a). The I-V characteristics of graphene Chemiresistor is 

shown in Figure 4.13(c). The responses from the two sensors are compared in Figure 

4.13(a) for 10 min NO2 exposure (shaded region). We observe that the chemiresistor 

current changes by only 7.8 %, increasing from 1.027 to 1.1065 mA, while that in the diode 

sensor changes by 104 % increasing from 2.12 to 4.34 μA, under the same applied bias 

magnitude of 4 V (reverse bias for the diode sensor). This constitutes a 13.3 times 

enhancement in response for the diode sensor compared to the regular chemiresistor sensor, 

clearly highlighting the improved performance of the former. For NH3 the difference in 

response is less dramatic, but a significant 3 times higher response is observed for 

Graphene/p-Si diode sensors compared to the graphene chemiresistor (Figure 4.13(b)). 

Very significantly, the reverse bias operation of the diode sensor enables it to operate at a 
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much lower power level of 2.12 μA  4 V = 8.48 W compared to the chemiresistor, which 

requires an operational power of 1.027 mA  4 V = 4.108 mW, a reduction of 484 times, 

which is highly desirable for sensor system design.  

Careful observation of Figure 4.13(a,b) indicates that exposure to NO2 results in a 

fast and almost linearly changing conductivity, which does not saturate even after 10 min 

 

Figure 4.13 (a) Comparison between the NO2 responses of graphene/p-Si 
heterojunction device and graphene chemiresistor on SiO2 fabricated on the same 
chip side by side. The black line shows the response of graphene/p-Si device and 
red line shows the response of graphene on SiO2 for NO2 exposure. The exposure 
duration (10 minutes) and bias voltage magnitude (4V) is same for both the cases 
where reverse bias is applied across the graphene/p-Si device. (b) Comparison of 
NH3 sensing behavior where the black and red lines show the responses of the 
graphene/p-Si device and graphene chemiresistor, respectively, for NH3 exposure. 
(c) Current-Voltage characteristics of graphene chemiresistor on SiO2 
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of exposure. In contrast, with NH3 exposure, the conductivity changes at a slower rate (in 

terms of percentage change), and reaches a constant value in 1 – 2 min. This can be 

explained by considering previously reported results that the propensity for charge transfer 

between adsorbed molecules and graphene decreases as the graphene Fermi level moves 

closer to the defect level introduced by the adsorbed molecules.[100] Initially, the graphene 

Fermi level, though below Dirac point, is much closer to the NH3 induced defect level, 

which is slightly above the Dirac point, compared to NO2 defect level which is typically 

formed 300 – 400 meV below the Dirac point (Figure 4.12(b) shows the band diagram for 

graphene/p-Si heterojunction along with the NO2 and NH3 induced defect levels).[100, 101, 

109] Therefore, the charge transfer process between NO2 and graphene is much faster 

compared to NH3, for which the response saturates as the Fermi level reaches close to the 

defect energy level introduced by its adsorption. To verify this idea further, we performed 

a series of measurements and studied the response as a function of concentration, exposure 

time and reverse bias voltage. 

4.4.3  Chemical Concentration Dependence of Chemi-Diodes  

Figure 4.14(a) shows the sensor response as a function of NO2 concentration 

downward from 20 ppm. We find that a concentration down to 200 ppb can be sensed 

easily, although the response is slower for lower concentrations, probably due to the sensor 

operation in ambient conditions. The response plotted as a function of concentration in 

logarithmic scale (Figure 4.14(b)) shows a linearly increasing sensitivity from 7 to 410% 

for a concentration variation from 200 ppb to 20 ppm. The NH3 response for 5 minutes 

exposure is shown in Figure 4.14(c) with concentrations varying from 10 to 550 ppm. The 

response magnitude can be seen to increase logarithmically with the increase in 
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concentration as shown in Figure 4.14(d). However, a logarithmic plot of percentage 

resistivity change as a function of concentration is almost linear as seen in Figure 4.14(d). 

Figure 4.14 (a) Sensor response for different NO2 concentration decreasing from 20 ppm 
to 200 ppb for 30 minutes of exposure at -4 V reverse bias. (b) Log-log plot of the 
maximum conductivity change as a function of NO2 concentration. (c) Sensitivity plots 
for different concentration of NH3 varying from 550 ppm to 10 ppm for 5 minutes of 
exposure at reverse bias of -3V. (d) Logarithmic plot of maximum conductivity change 
along with the corresponding resistivity change with NH3 concentration. The repeatability 
of sensor response of the diodes is illustrated for (e) 20 ppm NO2 and (f) 50 ppm NH3 
sensing 
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For 10 ppm, the conductivity magnitude change is 43.4% which increased to 93.3% for 

550 ppm NH3. The corresponding resistivity change is 76.6% for 10 ppm and an enormous 

1392.5% for 550 ppm NH3. To investigate the repeatability of the reverse biased sensor 

response, it was exposed to 20 ppm NO2 and 50 ppm NH3 for 4 successive cycles, and the 

responses are shown in Figures 4.14(e) and (f), respectively. For the initial NO2 exposure, 

the graphene/p-Si sensor shows 64% increase in conductivity in 10 minutes. The recovery 

was carried out in ambient condition for the same time duration (10 minutes), and the 

sensor recovered to less than 20% of the maximum response (Figure 4.14(e)). For the 

subsequent cycles the sensor showed very good repeatability, although the maximum value 

of the response increased slightly in every cycle due to incomplete recovery. The 

graphene/p-Si sensor showed very repeatable responses for 50 ppm NH3 as well, when 

exposed to 5 minutes on/off duration for 4 consecutive cycles. For the initial NH3 exposure, 

the sensor showed 66% decrease in the conductivity and in 5 minutes recovered to less than 

20% in ambient condition (Figure 4.14(f)). Very similar responses were recorded for the 

next 3 cycles. Thus, we find that for both electron acceptor and donor type of gas molecules 

the diode sensor responses are quite repeatable. Although we have included sensing 

response down to 200 ppb of NO2, with proper optimization of the sensor, detection down 

to low ppb range is anticipated. In the low frequency range (<100 KHz), which is relevant 

for sensor operation, the ultimate sensor performance is typically limited by the 1/f noise, 

which in graphene chemiresistor sensors arises out of the fluctuations in number of charge 

carriers and mobility caused by charged impurities and scattering centers.[57] For the 

proposed sensor based on graphene/Si heterojunction, the 1/f noise is still expected to be 

predominant in low frequencies, however, the factors affecting it need to be carefully 
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investigated, especially bearing in mind that the overall noise is affected by current 

transport through a graphene resistor, a graphene/Si heterojunction and a Si resistor. 

 

 

Figure 4.15 The diode response as a function of exposure time and reverse bias has 
been illustrated here. (a) Sensitivity to 20 ppm NO2 for different exposure time where 
no saturation of the diode is observed till 40 minutes of exposure. (b) Diode response 
for 20 minutes of exposure to 20 ppm NO2 at varying reverse bias of -1 to -8V 
suggesting a tunability of response is possible by varying the reverse bias. (c) Response 
to 550 ppm of NH3 with different exposure time. A saturation behavior is observed for 
current lowering NH3. (d) Diode response to 10 minutes of exposure to 550 ppm NH3 
at different reverse bias from -1 to -10V suggesting a tunable response to NH3 as well 
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4.4.4  Sensitivity Tuning in Chemi-Diodes  

 Figure 4.15(a,b) shows the effect of exposure time and bias voltage for NO2, while 

those for NH3 are shown in Figure 4.15(c,d). From Figure 4.15(a,b) we find that simply 

increasing the duration of exposure to NO2 does not affect the rate of change of current to 

a noticeable extent, however, changing the magnitude of the applied reverse bias affects it 

significantly. With higher reverse bias, the current increases at a faster rate initially, but 

shows some tapering afterwards, which can be clearly seen for Vg = -8 V. With more 

negative bias applied to p-Si, the graphene Fermi level goes down further away from the 

Dirac point toward the NO2 defect level, reducing the SBH. The reduction in SBH causes 

the junction current to increase, and responses to be faster initially, which however tapers  

 

Table 4.1 Approximate rise and recovery rate for NO2 and NH3 exposure at different bias 
voltage 

Bias 
Voltage 

(V) 

Rise Rate (NO2) 

(percentage/sec) 

Recovery Rate 
(NO2) 

(percentage/sec)

Rise Rate (NH3) 

(percentage/sec) 

Recovery Rate 
(NH3) 

(percentage/sec) 

-1 0.19 1.61 0.28 0.04 

-2 0.22 1.88 0.23 0.06 

-4 0.41 3 0.27 0.06 

-8 0.71 7.43 0.38 0.08 

 

off as the Fermi level approaches the NO2 defect level (Figure 4.15(b)). Such tapering 

effects are clearly seen for NH3 responses in Figure 4.15(c,d), where the responses saturate 

early, as expected from discussions above, and do not change with varying exposure time. 

With the application of higher reverse bias, the Fermi level moves downward, increasing 
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its separation with the NH3 induced defect level, and causing the NH3 responses to exhibit 

less saturating trend as seen from Figure 4.15(d).  

Although the response and recovery times for the sensors cannot be determined 

directly from Figure 4.15, (since the sensor response did not saturate or recover fully within 

the time period of measurement), the temporal response of the sensor can still be quantified 

 

Figure 4.16 The effect of SBH on Graphene/p-type heterostructure Schottky 
diode sensitivity for (a) NO2 and (b) NH3. Effects of (c) NO2 and (d) NH3 
exposure on reverse biased I-V characteristics for a diode sensor. Black curves 
correspond to pre-exposed condition, solid for dark and dotted for illumination, 
red curve corresponds to 10 min and blue to 30 min of gas exposure. Lower 
SBH of the diode sensor results in inferior response to NO2 exposure (c) and 
improved response for NH3 (d) is observed compared to the responses in Figure 
4.9(a,b) respectively. 
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by the rise rate, the percentage change in conductivity per sec, which is typically dependent 

on the analyte concentration. For NO2, the extracted rise rate shows a linear increase with 

the bias voltage, changing from 0.19 to 0.71 percent/sec with increase in reverse bias from 

-1 to -8 V. These rates are tabulated in Table 4.1. Rise rate for NH3 exposure also shows a 

similar increasing trend with the magnitude of the reverse bias. From Figure 4.15(c) we 

note that the responses measured under illumination have much faster recovery transients 

compared to the one measured in dark condition. This is because higher photo-generated 

minority carrier density near the junction under illumination allows the adsorbed NH3 

molecules (positively charged) to become quickly charge neutral and desorb. Careful 

observation of the recovery transients in Figure 4.15(b) indicates that the desorption 

transient for NO2 becomes faster with the application of higher negative bias as noted in 

Table 4.1. The recovery rate increases from 1.61 to 7.43 percent/sec for the bias voltage 

increase from -1 to -8 V. For NH3, the recovery rate increases only slightly from 0.04 to 

0.08 percent/sec. 

4.4.5  Role of SBH in Improving Selective of Chemi-Diodes 

It follows from our experimental results that a reverse biased graphene (or another 

suitable 2D material)/semiconductor “Schottky type” heterojunction can be utilized as a 

unique platform for developing highly sensitive, fast responding and tunable sensor with a 

very low operational power requirement. A 2D material, such as graphene, uniquely allows 

the modulation of the interface SBH while analyte molecules adsorb on the outer surface. 

Such a SBH modulation then causes an exponential change in junction current, which 

imparts them extremely high sensitivity. The low power requirement of the sensor is a 

direct consequence of its reverse bias operation. Therefore, for optimized sensor design, 
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the Fermi level difference between graphene and the semiconductor needs to be carefully 

chosen keeping in mind the specific analyte to be detected. For example, with electron 

acceptor NO2 and graphene/p-Si diode sensor combination, high sensitivity in conjunction 

with low operational power can be achieved if SBH is higher and the adsorbing molecules 

reduce the heterojunction SBH, so that the junction current changes from its usual low 

value to a higher value. On the other hand, for electron donor NH3, a lower SBH is preferred 

so that NH3 adsorption can increase the SBH and reduce the original higher reverse current 

to a significant extent which would result in very high sensor response. Our experimental 

results support these assertions, as illustrated in Figure 4.16(a), where the diode with larger 

SBH (~0.65 eV) shows a much improved response of 104 % for 10 min exposure to 20 

ppm NO2 compared to one with low SBH (~0.60 eV), which shows a relatively lower 

response of 65%. On the other hand, as seen in Figure 8b for NH3, the sensor diode with 

smaller SBH (~0.59 eV) has a much larger response of 99% (resistivity change of 9900 %) 

when exposed to 550 ppm NH3 for 10 minutes while a diode with SBH of ~0.65 eV in blue 

shows a response of 61% (resistivity change of 156%) only. These results are further 

corroborated through reverse biased I-V characteristics of diode (Figure 4.16(c,d)) taken 

under various gas exposures.  A diode with a smaller SBH of 0.6 eV shows smaller 

response of 132% for 30 min exposure to 20 ppm NO2, compared to the diode in Figure 3a 

with a SBH of 0.65 eV, which exhibits 716% response under similar test conditions. On 

the other hand, for NH3 (550 ppm) a larger 90% change at -4 V bias with 10 minutes 

exposure in dark is observed for a ~0.59 eV SBH diode, compared to the larger SBH (~0.64 

eV) diode in Figure 4.9(b), which shows 13% change under similar test conditions. It 

should also be noted that variability in the graphene sensors can be caused by 
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environmental issues as well as material imperfections.[34] Since the performance of the 

sensor depends on the equilibrium SBH, which can be strongly affected by both these 

factors, the various steps leading to the sensor realization (i.e. synthesis, transfer and device 

fabrication) need to be carefully optimized to minimize their impact. 

In general, for sensors made of 3-dimensional materials, the current transient 

saturation happens when all possible surface states are occupied by the adsorbing 

molecules for a given analyte concentration. Only with 2-dimensional materials like 

graphene, it is possible for the Fermi level to change due to charge exchange with adsorbed 

molecules or with application of a reverse bias. If the charge exchange causes the Fermi 

level to reach the level of the defect energy states induced by the adsorbed molecules then 

the current transient will saturate even before all possible surface state occupation happens 

at a given concentration. The effect of reverse bias on the NO2 and NH3 sensing transients 

observed for our sensor clearly indicates that the later mechanism (alignment of graphene 

Fermi level with defect energy level) is more important in causing current transient 

saturation in these sensors. This offers interesting possibilities of utilizing the reverse bias 

as a handle to control the Fermi level and tune the sensitivity as well as the response time 

of sensors made of appropriate 2D material/semiconductor hetero-junctions. 

4.5  Functionalization of Graphene/Si Diode 

Graphene has demonstrated very high sensitivity to a large variety of polar 

molecules, (i.e. NO2 and NH3)[125] it is insensitive to most non-polar molecules, such as H2, 

with which it does not exchange charge. A surface functionalization is therefore necessary 

for detecting these non-polar molecules. It has been demonstrated that surface 

functionalization of graphene by catalytically active noble metals (such as Pd and Pt) leads 
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to charge transfer between graphene and the metal hydride formed in presence of H2 

facilitating its detection.[126-128] There are reports on H2 sensors utilizing epitaxial 

graphene,[127] graphene synthesized through chemical vapor deposition (CVD),[126] and 

chemically synthesized graphene nanoribbon networks,[128] which are functionalized with 

either Pd or Pt to impart H2 sensitivity. Of these, only the chemically synthesized graphene 

nanoribbon network based sensor has so far shown good H2 sensitivity (producing ~55% 

change in resistance for 40 ppm H2), while others showed much lower sensitivity in the 

range of few percent for tens of ppm H2 exposure. The higher sensitivity of the graphene 

nanoribbon networks[128] can be attributed to its porous structure and high specific surface 

area.  

In general, the sensitivity of these commonly used “chemiresistor” type sensors is 

dependent on two factors: (i) the amount of charge exchanged from the analytes (facilitated 

by the functionalization layer), and (ii) the mobility of the charge carriers, since resistivity 

is inversely proportional to the product of mobility and charge density. The former depends 

on the material properties and thickness of the functionalization layer used, while the latter 

is controlled by the graphene quality, and more significantly, by the charge carrier 

scattering caused by the functionalization layer[129, 130] and substrate underneath the 

graphene.[115] The functionalization layer can further reduce the mobility[131], and if 

conducting, can also provide a parallel path for current flow thereby further reducing 

sensitivity. Therefore, sensing paradigms where the sensitivity of the sensor does not 

directly depend on the mobility of the charge carriers would be of significant interest. 

Catalytically active noble metal functionalized Graphene/Si Schottky diode H2 

sensor operated in reverse bias, which takes advantage of the exponential change in current 
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due to SBH change, and exhibits several times higher sensitivity compared to the best 

performance of graphene based chemiresistor type H2 sensor functionalized similarly. In 

fact, the sensitivity of the sensor allows us to reach a detection limit close to the 

atmospheric concentration of H2 (~0.6 ppm).[132] The reverse bias operation also allows 

modulation of the Fermi level of graphene depending on the magnitude of the bias, which 

can lead to the tuning of sensitivity of the sensor and expansion of the dynamic range. 

Another advantage of the reverse bias operation of the sensor is its low power requirement 

due to low steady state current in the range of μA flowing in reverse bias. The fabrication 

of these devices followed the same processing steps as those of graphene/Si diodes 

described in section 4.2. Additionally as a last step different thickness (1-3 nm) of Pd and 

Pt were evaporated on graphene, transferred on Si, in e-beam metal deposition chamber 

using shadow mask. 

4.6  Characterization of Pt and Pd Functionalized Chemi-Diode 

4.6.1  Raman Characterization of Functionalized Chemi-Diodes  

Raman spectra were measured on graphene transferred to the Si substrate to 

determine the quality of transferred graphene. Figure 4.17(a), (b), and (c) show the 

representative Raman spectra of graphene transferred on Si as well as Pd and Pt decorated 

graphene on Si. All signature peaks, D, G and 2D, along with the Si peak at 1451 cm-1, can 

be observed. The transferred graphene layer on top of Si (figure 4.17(a)) shows intensity 

ratio, ID/IG ratio of 0.16, suggesting high quality graphene. The I2D/IG ratio of 2.47, and 2D 

peak full width at half maximum of 34.38 cm-1, are indicative of single layer graphene. The 

ID/IG ratio of 0.32 for Pd decorated graphene (figure 4.17(b)) suggests some degradation in 

the quality of graphene following e-beam evaporation of 3 nm thick Pd nanoparticles for 
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functionalization. This degradation might be due to the creation of point defects in 

graphene by the metal atoms hitting it during e-beam evaporation. For 2 nm thick Pt 

functionalized graphene the ID/IG ratio is higher, 0.54 (figure 4.17(c)), which indicates 

higher defect density in the film. It is probably a consequence of higher film damage caused 

by heavier Pt atoms during evaporation process compared to Pd atoms. Deposited metal 

films typically grow on crystalline substrates through nucleation followed by grain growth. 

The growing grains coarsen and coalesce to form complete film coverage as metal 

evaporation continues. Figure 4.17(d) captures the initially formed grains of Pd on 

graphene/Si in a scanning electron microscopy (SEM) micrograph. Due to the small growth 

 

Figure 4.17 Raman spectra of (a) Graphene on p-Si, (b) Pd-deposited graphene on 
p-Si, (c) Pt-deposited graphene on p-Si; (d) SEM top view image of 3 nm Pd-
functionalized graphene on p-Si. Scale Bar is 50 nm. (e) Zoomed out image of that 
shown in (d) showing graphene wrinkles. Scale Bar is 100 nm. (f) Pt-functionalized 
graphene on p-Si. Scale Bar is 100 nm. 
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duration, (~2 mins for 3 nm thickness) the Pd grains could not become large enough to 

coalesce completely, therefore partial coverage of Pd film is observed. A zoomed out SEM 

micrograph (figure 4.17(e)) at the same location shows an overall smooth coverage with a 

few wrinkles in the graphene layer. Figure 4.17(f) shows an SEM micrograph depicting 

similar coverage for deposited Pt film with 2 nm thickness. 

4.6.2  Current-Voltage Characterization of Functionalized Chemi-Diodes 

Figure 4.18(a) shows the schematic of a graphene chemiresistor sensor fabricated 

side by side with a graphene/Si heterojunction chemi-diode sensor with metal film 

functionalization layer. Optical microscopy image of the fabricated Pd-functionalized 

graphene/Si Schottky diode sensor is shown in Figure 4.18(b). The initial electrical 

characteristic of chemi-diode before Pd and Pt deposition is shown by the solid black 

curves in Figure 4.19(a) and (d), respectively, which exhibits typical rectifying 

characteristic in agreement with previous reports.[117, 133]  From Figure 4.19(a), the 

 

Figure 4.18 (a) Device schematic and biasing scheme of Pt/Pd functionalized graphene 
chemiresistor and graphene/Si Schottky diode sensors fabricated on the same chip. 
Gray spots indicate metal decoration. (b) Optical Image of graphene/p-Si 
heterojunction Schottky diode sensor with 3 nm Pd-functionalization, white dashed 
box approximately enclosed the graphene on both Si and SiO2, graphene is visible on 
SiO2, and Pd-functionalization is also showing contrast on SiO2 region covered by 
graphene. 

(b) 
(a) 
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extrapolated ideality factor and SBH using the thermionic emission model are 1.68 and 

0.648 eV, respectively, which are quite close to those reported in the literature.[121] The 

higher ideality factor has been attributed to various factors including SBH variation with 

reverse bias arising from graphene’s bias dependent work function, Schottky Barrier 

inhomogeneity, and image charge induced SBH lowering.[118, 119, 122] Due to graphene’s 

bias dependent work function, with the increase in reverse bias magnitude the SBH at 

graphene/Si interface decreases and correspondingly the reverse current increases, which 

is noticeable from the inset of Figure 4.19(a). 

4.6.3  Sensing Response of Functionalized diodes  

 After separate deposition of 3 nm Pd and 2 nm Pt over the graphene/Si 

heterojunction on two different devices, both forward and reverse currents were found to 

increase, however, the I-V characteristics still remained distinctly Schottky (dashed blue 

curve in Figure 4.19(a) and (b)). The increase in current is due to the reduction in 

graphene/Si barrier height caused by “p-type doping” of the deposited Pd/Pt layer. Such 

doping of graphene by metallic thin films resulting in significant movement of the Dirac 

point, to both right and left (depending on the work function of the deposited metal 

compared to that of graphene), has been reported earlier.[134] Since the work function of Pd 

and Pt[135] is much higher than graphene (4.5 eV), electrons from graphene are expected to 

move to Pd/Pt, effectively inducing p-type doping in graphene, and causing downward 

movement of its Fermi level. This effect has been both theoretically predicted[136] and 

experimentally observed for Pt-functionalized graphene.[127] The downward movement of 

graphene Fermi level would then reduce the hole barrier height at the graphene/Si interface, 
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which was experimentally observed as the SBH changed from 0.648 to 0.546 eV after the 

3 nm Pd deposition and 0.643 to 0.592 eV after 2 nm Pt deposition.  

To investigate the effect of H2, exposure, the I-V characteristic was retaken after 

10 minutes of 1000 ppm H2 flow as shown by the orange dotted curve in Figure 4.19(a) 

and (b). From Figure 4.19(a), we find that both forward and reverse currents decreased in 

magnitude with H2 exposure, which is expected since the SBH increased from 0.546 to 

0.59 eV in case of Pd functionalized device. The SBH increase can be explained by the 

following mechanism: In presence of Pd or Pt, H2 dissociates into atomic hydrogen and 

forms metal hydrides (PdHx, PtH), which have lower work function then the pure Pd and 

Pt, respectively. [126-128]  This results in electron transfer to graphene reducing its p-doping, 

and increasing hole barrier height at the graphene/Si interface. However, the percentage 

change in forward current is much smaller than the reverse current, i.e. at 4V forward bias, 

 

Figure 4.19 (a) Current-Voltage (I-V) characteristics of graphene/p-Si, after 
Pd-functionalization, and after 10 minutes exposure of the Pd-functionalized 
sensor to 1000 ppm H2. (b) I-V characteristics of graphene/p-Si (black solid 
line), after Pt-functionalization and after 10 mins exposure of the Pt-
functionalized sensor to 1000 ppm H2. 

(b) (a) 
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the current decreased from 3.56 to 2.81 mA (21.06% change) while at -4 V bias it changed 

from -256.65 to -9.42 μA (96.33%).  

The series resistance was also extracted from the diode forward characteristics 

(following the similar methods employed in reference 20), and found it to change from 

1.05 (pre-exposure) to 1.32 kΩ, after exposure to 1000 ppm H2, for Pd functionalization.  

In terms of resistance change, a commonly used metric for H2 sensing, [126-128]  the changes 

at 4 V forward and reverse bias are ~1.26 and ~27 times, respectively. Clearly, the 

sensitivity (defined as the ratio of change in resistance due to H2 exposure to the initial 

resistance before exposure, expressed as a percentage) is dramatically enhanced in reverse 

bias. In addition, the power consumed is much reduced in reverse bias, only 1.03 mW, 

compared to 14.24 mW in forward bias, which is ~14 times higher. Reverse bias operating 

power can be further reduced to μW range simply by scaling down the device dimensions. 

However, the device dimensions should be carefully chosen to keep signal to noise ratio 

(SNR) acceptable since SNR degrades as the device is scaled down. A similar response is 

also observed for Pt functionalization, and shown in figure 2(d), the SBH changed from 

0.592 to 0.623 eV with the exposure of 1000 ppm H2 and at -4 V bias, current decreased 

from -47.8 to -14.94 μA (68.74% change) which is higher than the response obtained at 4 

V forward bias, 1.168 to 1.1017 mA (5.68% change). The series resistance increased from 

3.11 to 3.44 kΩ after exposure to 1000 ppm H2. 

4.6.4  Functionalized diodes verses chemi resistor towards H2 Sensitivity 

 To directly compare the performances of Graphene/Si chemi-diode and graphene 

chemiresistor, they were fabricated side by side on the same chip (schematically shown in 

Figure 4.18(a)) using the same graphene sample and functionalized by 3 nm Pd and 2 nm 
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Pt, separately. Performances of both chemi-diode and chemiresistor sensors with 3 nm Pd 

functionalization upon exposure to 200 ppm H2 for 10 minutes, at -5V bias are shown 

together in Figure 4.20(a). Graphene/Si diode sensor shows 122% resistance change (red 

curve), while the response for graphene chemiresistor is a mere 2.9% (blue curve). Thus, 

more than 40 times performance enhancement for the same exposure and bias conditions 

are observed for the chemi-diode sensor compared to the chemiresistor sensor. Of course, 

the operating power for chemiresistor is 46.425 mW, which is much higher than 64.7 μW 

for the diode sensor. The performance enhancement of the graphene/Si diode sensor was 

verified with 2 nm Pt decoration as well. The responses are shown in figure 4.20(b) for 10 

minutes of 1000 ppm H2 exposure at -2V bias condition. Once again the diode sensor 

showed a much higher sensitivity of 106% compared to only 7% for the chemiresistor, a 

15 fold improvement. 

 

Figure 4.20 (a) Comparison between the H2 responses for similarly functionalized 
graphene/p-Si chemi-diode device and graphene chemiresistor on SiO2, fabricated on 
the same chip. (a) Response for 200 ppm H2 (pink box) in case of Pd- functionalization 
where red one (left y-axis) is for graphene/p-Si chemi-diode and blue one (right y-axis) 
is for graphene chemiresistor. (b) Response for 1000 ppm H2 (pink box) when Pt-
functionalization was employed where red curve (left y-axis) is for graphene/p-Si 
chemi-diode and blue curve (right y-axis) is for graphene chemiresistor. 
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4.6.5  Sensitivity Tuning in Functionalized Diodes 

 The performance of graphene/Si chemi-diode sensor is at least an order of 

magnitude improved over other graphene based H2 sensors reported utilizing the same Pd 

functionalization.[126, 137] The performance is also better compared to the high-sensitivity 

graphene nano-ribbon based sensor,[128] which owes its high sensitivity to the porous nature 

and large surface area of the nanoribbons. The very high sensitivity of our sensors can be 

attributed to the usage of a Schottky junction to perform sensing, where the current changes 

exponentially with the change in SBH induced by H2 adsorption. The Schottky diode type 

H2 sensor based on Pd/semiconductor (i.e. Pd/Si[138] and Pd/InP[139]) junction has been 

reported earlier, utilizing various methods for depositing Pd contacts and resulting in high 

H2 sensitivity. It should, however, be kept in mind that the role of the Pd layer in our sensor 

is that of a functionalization layer, i.e. it is not directly forming a Schottky contact with the 

Si, it is just allowing graphene/Si junction to respond to H2 by facilitating its adsorption 

and changing the SBH. In addition, the Fermi level of the graphene layer may be altered 

using the reverse bias to tune the hydrogen sensitivity, a feature that is completely unique 

to this sensing paradigm  

The response of Pt (2 nm) functionalized sensor was investigated for H2 

concentration varying from 1000 to 10 ppm at a fixed reverse bias of -4V. The sensing 

response illustrated in Figure 4.21(a) can be seen to vary from 103 to 5.5% as the H2 

concentration changes from 1000 to 10 ppm, for 15 minutes exposure. As mentioned 

earlier, an advantage of the sensor operation in reverse bias is that the bias magnitude can 

be varied to change the Fermi level of graphene and consequently tune the sensor response. 

With the higher reverse bias applied to the graphene/Si diode, the graphene Fermi level 
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moves further down,[119, 140] compared to the donor states induced by the metal hydride and 

the graphene/Si SBH will decrease. Thus, in presence of H2, more electrons would transfer 

to graphene, which will in turn change the SBH by a larger amount, and the sensitivity can 

be expected to be higher. To substantiate the idea, the responses of were retaken at -8V 

bias, and shown in Figure 4.21(b). The percentage resistance change increased from 5.5% 

at -4V to 13% at -8V for 10 ppm H2 exposure over the same 10 minute duration. In fact, 

this also enabled detection of H2 down to 1 ppm level, which is significant, as it is close to 

the atmospheric background of 0.6 ppm.[132] Since, our sensing experiments were 

conducted in atmospheric conditions, strictly speaking the sensor response for 1 ppm H2 

exposure actually corresponds to ~0.4 ppm of H2 concentration. Utilizing an optimized Pd 

coating the sensor sensitivity was significantly enhanced (explained later), which 

highlights the possibility of performing detection of H2 in the ppb level in a controlled 

environment. These results clearly indicate that the sensitivity of the graphene/Si chemi-

 

Figure 4.21 (a)  Percentage resistance change of Pt-deposited graphene/p-Si 
device at -4 V bias for different H2 concentration in the range of 1000-10 ppm and 
in N2 environment (pink box). (b) Sensitivity enhancement at higher bias (-8V). 

(b) (a) 
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diode sensor is significantly tunable with magnitude of reverse bias, which is not possible 

with typical metal/semiconductor diode sensors. 

4.6.6  Functionalization: Pd verses Pt 

 To compare the performance of Pd and Pt in terms of H2 sensitivity in 

functionalized chemi-diodes, 1 nm of Pt and Pd were deposited on two different diodes and 

the sensor responses upon exposure to 1000 ppm H2 were recorded. For the 1 nm Pt 

deposited device the response varied from 27.5 to 77.5% for the aforementioned voltage 

range, with higher rise rate observed for the larger reverse bias voltages, which also resulted 

in higher peak response (Figure 4.22(a)). Since Pd has a 3 times higher H2 solubility 

compared to Pt (while having same H2 diffusion coefficient),[141] it causes a larger 

reduction in p-type doping upon H2 adsorption, which can result in a larger increase in 

SBH, hence Pd functionalized graphene/Si chemi-diode sensors are expected to show 

better response than Pt functionalized ones. Indeed for the 1 nm Pd functionalized device 

 

Figure 4.22 (a) Bias dependence of sensor response for 1000 ppm H2 (pink box) as 
the voltage was changed from -1 to -5 V for Pt-functionalized device. (b) Sensitivity 
enhancement at higher bias (-8V). Bias dependence of sensor response for 1000 ppm 
H2 (pink box) as the voltage was changed from -1 to -5 V for Pd-functionalized device. 

(a) 
(b) 
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the response varied from 200% at -5V to 74% at -1 V (Figure 4.22(b)), which is ~2.5 times 

higher compared to 1 nm Pt functionalized sensor for the same applied bias (Figure 

4.22(a)). Additionally, there are significant differences between the Pt and Pd coated 

devices in terms of the transient responses. For the former, the response time is much 

slower than the later, while the recovery time is somewhat faster. This is however expected 

due to higher H2 solubility in Pd, which leads to higher concentration in the Pd 

functionalization layer, which would make the response time faster but the recovery time 

a little slower. The sensitivity for Pt and Pd functionalized (1 nm thick metal coating) 

devices are compared in Figure 4.23 for various reverse bias voltages from where it is 

apparent that the later always show better sensitivity to H2 irrespective of the voltage bias. 

Interestingly, with increasing reverse bias, the sensitivity of the Pd–coated sensor keeps 

increasing sharply, while that of the Pt-coated sensor displays a saturating trend. 

 

 

Figure 4.23 Comparison between the responses for Pt and Pd-functionalized 
sensor at different reverse bias voltages. 
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4.6.7  H2 Concentration Dependence of Pd Functionalized Chemi-Diodes 

 Thicker Pd layer is expected to improve the H2 sensitivity in two ways. First, it 

would lower the graphene Fermi level by a larger magnitude due to higher p-type doping, 

which would improve sensitivity as discussed below. Second, it would adsorb higher 

volume of H2, and cause higher movement of the graphene Fermi level, thereby resulting 

in higher sensitivity. In fact, a previous study on graphene chemiresistor based H2 

sensor[137] indicate that 3 nm Pd functionalization layer provides maximum sensitivity to 

H2. From the I-V characteristics we find that higher Pd thickness of 3 nm changes the 

graphene/Si SBH by 102 meV compared to 61 meV caused by 1 nm Pd deposition. This 

means the graphene Fermi level moves further down by 3 nm Pd deposition, which causes 

the SBH to be lower (lower resistance) initially, so with H2 adsorption, the relative change 

in resistance becomes much larger. Sensing experiments were carried out using the 3 nm 

Pd functionalized chemi-diodes, with the H2 concentration varying from 1000 to 2 ppm, 

 

Figure 4.24 (a) Responses of 3 nm Pd functionalized graphene/p-Si device for H2 
concentration ranging from 1000 to 2 ppm (pink box) for 10 minutes exposure. (b) 
Sensor response as a function of H2 concentration plotted in log-log scale. The solid 
straight line shows a least square fit to the data. 

(a) (b) 
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with exposure duration of 10 minutes, at a fixed reverse bias of -4 V. We find from Figure 

4.24(a) that sensitivity changes from 13.55% to 3088% as the H2 concentration increases 

from 2 to 1000 ppm. The response time is increased from 90 sec to 270 sec as the H2 

concentration changes from 1000 to 2 ppm. The recovery times are very fast, taking only 

1 sec to recover to 50% of the maximum resistance change for 1000 ppm H2. Interestingly, 

the full recovery times are faster for the smaller concentrations of H2 as can be seen from 

Figure 4.24(a), with complete recovery observed within a few minutes for most 

concentrations other than 500 and 1000 ppm. This is probably due to the larger amount of 

H2 adsorption by thicker Pd layer (3nm) functionalized chemi-diode compared to that of 

1nm Pd functionalized graphene/p-Si device, which recovered completely as shown in 

Figure 4.22(b). The plot of sensitivity versus H2 concentration (Figure 4.24(b)) indicates 

that the sensitivity in these sensors varies almost linearly with the H2 concentration when 

both of them are plotted in logarithmic scale. The work function change of the Pd layer 

(and hence the SBH) is expected to vary linearly with log of H2 concentration,[139] while 

the sensor current, which controls the sensitivity, varies exponentially with the SBH. Thus, 

the log-log relationship between H2 concentration and sensitivity is expected to be linear 

as observed in figure 4.24(b). It is noteworthy that this exponential behavior is different 

from that obtained previously from graphene and graphene nanoribbon network based 

chemiresistive H2 sensors, where the sensitivity got saturated at higher H2 concentration 

(plotted in log scale).[126, 128, 142] This difference in the sensing response, is however 

expected, and follows from the difference in the detection principles of the chemiresistor 

and the proposed reverse biased chemi-diode sensor as discussed above. 
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 In summary the chemical sensitivity improvements in graphene devices were 

obtained by use of a back-gate bias, structure defects in graphene and finally by use of 

thermionic transport in graphene/Si based Schottky devices or chemi-diodes. These chemi-

diodes showed huge sensitivity enhancements towards polar molecules such as NO2 and 

NH3 with additional benefit of tunable sensitivity and orders of magnitude low power 

operation. The extent of graphene chemi-diodes towards sensing nonpolar molecules such 

as H2 has been facilitated by functionalization of Pd & Pt nanoparticles. These 

functionalized chemi-diodes were found to offer all the same advantages of a graphene 

chemi-diodes and appear to outperform many of the existing graphene based H2 sensors. 

In the fifth and final chapter the summary of this thesis will be presented along with some 

of the fascinating future directions. 

 

 

 

 

 

  



www.manaraa.com

 

117 

 

 

 

 

CHAPTER 5 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

 This thesis explored the best possible process parameters to grow low defect 

monolayer graphene in a home-build chemical vapor deposition unit. The optimized 

parameters were obtained by a series of growth and characterization steps which involved 

learning from day to day growth, and understanding growth mechanism from most recent 

publications and incorporating these knowledge into improving the CVD of graphene. 

Graphene transfer process was developed to fabricate devices on any desired substrates. 

The graphene based device processing was developed and optimized. Graphene based 

devices such as FETs, Schottky diodes were fabricated along with various test structures 

such as TLM pads and Hall bars. Various characterization was performed, on graphene and 

devices, such as Raman spectroscopy, IV, CV, Hall to access material quality, mobility, 

carrier concentration, sheet resistance, specific contact resistivity, SBH etc. Graphene 

based chemical sensor development was pursued thereafter. Graphene chem-FETs were 

used to tune sensitivity and selectivity and graphene chemi-diode were utilized to enhance 

sensitivity by an order of magnitude for polar molecules such as NO2 and NH3, and noble 

metal functionalization was used to sense non-polar molecules such as H2.     

 

 



www.manaraa.com

 

118 

5.1  Summary of This Work 

Amongst many amazing properties of graphene the one that makes it very 

promising sensing material is the ability to change the carrier concentration of graphene by 

electrical, chemical and optical means. Since carrier concentration is linked to Fermi level 

or work function of graphene, therefore new device paradigm such as barristor, and sensing 

paradigm such graphene Schottky diode can be realized where the working principle is 

modulation of carrier transport across a Schottky barrier which is alter by modulation of 

graphene Fermi level by electrical or chemical means. The latter device has been one of 

the highlight of this work. In order to realize the newer capability for practical device a 

reliable method of good quality, large area graphene is needed.  

In chapter 2 such a reliable method of producing good quality, large area graphene 

for practical device application has been investigate by chemical vapor deposition 

technique. The CVD reactor was built by assembling different components such as quartz 

tube chamber, horizontal split furnace, mechanical pump, MFCs and pressure gauges. The 

optimized process parameter were obtained by understanding growth mechanism and by 

performing series of growth on different types of substrates and under different growth 

conditions. Cu foils were found to be ideal substrate to grow monolayer graphene. Due to 

very low solubility of C in Cu the graphene growth is surface mediated and essentially self-

limited resulting in monolayer graphene which is also independent of the cooling rate as 

against Ni based growth. Therefore sophisticated hardware for controlling the cooling rate 

is not essential for growth on copper. The good quality, low defect, large area, monolayer 

graphene was successfully grown in routine basis using optimized process parameters as 
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suggested from low ID/IG (0.1-0.2) and high I2D/IG (3 to 4) and small 2D FWHM (<30 cm-

1) of Raman spectrum of as-grown graphene. 

In chapter 3 the graphene and graphene based device processing were successfully 

developed. The graphene based chemical sensor development was achieved which also led 

to understanding the role and physics of adsorbate induced defect level in tuning the 

sensitivity of graphene chem-FET by use of a back-gate bias. CVD grown graphene on Cu 

is needed to be transferred on a desired substrate for device fabrication. The transfer was 

optimized by coating layer of polymer on graphene congaing Cu foils and then dissolving 

the Cu in its etchant and scooping the graphene\polymer composite on a desired substrate. 

In sensor development work it was demonstrated that molecular doping of graphene is 

electrically tunable in a back-gated field effect transistor. The charge transfer doping 

decreased monotonically for a typical p-type gaseous dopant NO2, as the back gate voltage 

was reduced from 5 to -45 V, while for an n-type dopant NH3, the reverse was observed. 

A significant reduction in NO2 adsorption induced conductivity change from 26.1% to 0 

was observed over this voltage range, while for NH3 the conductivity changed from 0 to 

7.6%, which clearly demonstrates the utility of this technique in enhancing sensitivity and 

selectivity of molecular detection. Our proposed model for charge transfer, involving 

relative positions of the Fermi level and the adsorption induced defect level, yielded 320 

meV as the acceptor energy level for NO2, in agreement with earlier results. 

 Chapter 4 essentially deals with sensitivity enhancement of graphene based 

chemical sensors for practical applications and increasing the utility of graphene based 

sensors with use of functionalization layer to sense nonpolar molecules such as H2. Use of 

defective graphene enabled sensitivity to go up from 20% to 65 % range it still remains 
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fairly low because of liner dependence of change in current on number of adsorbed 

molecules on graphene surface in case of both FET and highly defective graphene. 

However in case of graphene/p-Si heterostructure molecular adsorption on its surface to 

directly alter graphene/Si interface barrier height, thus can affect the junction current 

exponentially when operated in reverse bias which results in ultrahigh sensitivity. By 

operating the device in reverse bias, the work function of graphene, and hence the barrier 

height at the graphene/Si heterointerface, can be controlled by the bias magnitude, leading 

to a wide tunability of the molecular detection sensitivity. Such sensitivity control is also 

possible by carefully selecting the graphene/Si heterojunction Schottky barrier height. 

Compared to a conventional graphene amperometric sensor fabricated on the same chip, 

the proposed sensor demonstrated 13 times higher sensitivity for NO2 and 3 times higher 

for NH3 in ambient conditions, while consuming ~500 times less power for same 

magnitude of applied voltage bias. The sensing mechanism based on heterojunction 

Schottky barrier height change has been confirmed using capacitance-voltage 

measurements. The use functionalization layer such as Pt or Pd offer similar advantage in 

sensing non polar H2 by graphene Schottky diodes. Pt and Pd functionalized graphene/p-

Si heterojunction chemi-diode H2 sensor demonstrated very high sensitivity, down to sub-

ppm level of H2.[143] These heterojunction diode sensors show at least an order of 

magnitude higher response compared to the graphene based chemiresistor type sensors for 

both Pd and Pt-functionalization. 
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5.2  Future Outlook 

5.2.1  SBH Tuning for Selectivity 

The graphene/Si heterostructure chemi-diodes have demonstrated impressive 

performance in sensing NO2 and NH3. The SBH of these device plays very important role 

in acceptor or donor type polar molecules. We also demonstrated in Figure 4.16 that large 

SBH chemi-diode is better sensor for hole donating NO2 which serves to decrease SBH 

whereas smaller SBH diode is better NH3 sensor which serves to increase SBH. However 

we did not have much control on getting a desired SBH in graphene/p-Si chemi-diodes. 

The possible causes of unpredictive SBH could be non-uniform doping of p-Si, as 

suggested by manufacturer in resistivity range of 1-10 Ω-cm, or a possibility of native 

oxide growth just before graphene transfer.  

 

Figure 5.1 (a) Doping dependent SBH in Au/n-GaAs Schottky diodes [144]. 
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In principle the SBH in a Schottky diode is determined by difference between metal 

work function and semiconductor electron affinity. Therefore the SBH should only be 

affected by choosing a different metal if the semiconductor is fixed. However it was 

reported that the SBH in Au/n-GaAs Schottky diodes was indeed dependent upon doping 

concentration of GaAs (Figure 5.1) and the effect was very pronounced upon lower 

temperature.[144] Therefore Schottky diode of graphene with semiconductor as GaAs or Si 

with different doping profile can be fabricated to get a desire SBH which many make is 

selective to NO2 or NH3 based upon a given SBH. 

5.2.2  Flexible Transparent Heterostructure 

 Two dimensional (2D) materials, due to their atomically thin nature and exceptional 

material properties, have emerged as the ultimate building blocks for 

nanoelectromechanical systems (NEMS), flexible transparent electronic devices, bio-

 

Figure 5.2 Graphene/MoS2 heterojunction diode characteristics. Inset shows the device 
schematics 
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implantable devices and wearable sensors. Graphene has already established itself in 

different applications. A hetero structure of graphene with other 2D material can offer new 

properties and application which may not be obtained by the individual 2D material by 

itself. For instance graphene and MoS2 heterostructure can be fabricated on a flexible 

substrate for chemical sensing application which may take advantage of sensing ability of 

graphene as in case of a chemi-diode. A flexible all 2D barristor device consisting of 

graphene/MoS2 heterostructure and 2D BN as gate insulator can be fabricated on flexible 

substrate that can offer very high on/off current ratio. Figure 5.2 shows schematic of 

graphene/MoS2 all 2D transparent Schottky diode on PDMS substrate along with 

preliminary IV which shows Schottky characteristics.  

5.2.3  Suspended Graphene Structures 

 Suspended graphene structures takes graphene into interesting area of MEMS and 

NEMS devices which have applications in graphene based resonator and voltage controlled 

oscillators have resonance frequency of oscillation in 100s of MHz range. Their electrical 

actuation would be ideal to replace some of the quartz based oscillators which have large 

 

Figure 5.3 (a) Suspended CVD graphene in bridge structure on top of SiO2/Si 
trench. (b) SEM image of the suspended graphene bridge array showing poor 
yield of the suspended structure. 

(a) (b) 
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footprints in devices. Another unique application of suspended graphene based structure 

could be IR sensing where a pixel element would compose of suspended graphene/polymer 

bi-layer such as graphene/parylene. Suspended graphene structures were successfully 

fabricated from the CVD graphene by 4 steps that involves making a patterned trench 

structure on SiO2/Si substrate, patterning of graphene on Cu foils into elongated stripes, 

transfer of patterned graphene on top of patterned SiO2/Si substrate and then carefully 

drying the suspended graphene in a critical point dryer. Figure 5.3(a) shows SEM 

micrograph of a suspended graphene on top of SiO2 graphene having Ti/Au contacts. The 

false coloration is used for better contrast. Figure 5.3(b) captures an array of such devices 

with poor yield.  

 Future work will involves design and fabrication of chrome mask so that individual 

devices can be accessed and characterized. Improving yield of such device in another area 

of work so that more devices are available for characterization. Most of the graphene 

MEMS structure are characterized in high vacuum to avoid dampening of amplitude, since 

these devices vibrates at very high frequency range of 100 MHz. Heterodyning is widely 

used characterization technique for determining resonance frequency of carbon nanotubes 

and also been used in suspended graphene devices. We can also characterized the 

resonance frequency in the same fashion in a high vacuum setup. Next the 

graphene\polymer suspended structures can be fabrication by similar fabrication method 

and can be characterized for IR sensing capability. 
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